PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the transport of brine in the Odra River downstream of a mine's discharge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mining of underground deposits causes the inflow of water to workings and the necessity of pumping them to the surface. The mining plant of KGHM Polska Miedź S.A. extracts copper ore in plant branches with different hydrogeological conditions. The inflowing water into the workings is characterised by variable mineralisation, which depends on the location of the branch. In the south-western part of the deposit, a low-mineralised stream with a relatively high flow rate can be observed, while the outflow of highly saline waters occurs in the north-eastern branch. Despite the activities undertaken that aim at using the pumped-off mine waters industrially, it is necessary to deposit them into the Odra River. Reducing the environmental impact on the Odra River is one of KGHM’s goals, which is being implemented by stabilising its salt concentration at a safe level. The paper presents the results of a 3D simulation of brine plume propagation based on a numerical model of advection-diffusion and turbulent flow. Bathymetric data from a section of the river approximately 500 m long and point data from an Odra water quality test were used to develop and validate the model. The paper discusses the types of factors that minimise the impact of brine discharge. The developed model will be used in the future to propose solutions that accelerate the mixing of mine waters with the waters of the Odra River.
Wydawca
Rocznik
Strony
366--379
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Hydrotechnical Unit, KGHM Polska Miedź S.A.
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology
  • Hydrotechnical Unit, KGHM Polska Miedź S.A.
Bibliografia
  • [1] Demchak, J., Skousen, J., McDonald, L. M. (2004). Longevity of Acid Discharges from Underground Mines Located above the Regional Water Table. J. Environ. Qual. pp. 656–668. 33
  • [2] Gao, L., Barrett, D., Chen, Y., Zhou, M., Cuddy, S., Paydar, Z., Renzullo, L. (2014). A systems model combining processbased simulation and multi-objective optimisation for strategic management of mine water. Environmental Modelling & Software. pp. 250-264. 60
  • [3] Gomes, C. J. B., Mendes, C. A. B., Costa, J. F. C. L. (2011). The Environmental Impact of Coal Mining: A Case Study in Brazil’s Sanga˜o Watershed, Mine Water Environ, pp. 159–168, 30. DOI 10.1007/s10230-011-0139-3.
  • [4] Bleninger, T., Jirka G.H. (2011). Mixing zone regulation for effluent discharges into EU waters. In: Proceedings of the Institution of Civil Engineers - Water Management. pp. 387-396. 164:8
  • [5] International network for Acid Prevention. (2009). Global Acid Rock drainage Guide (GARd Guide). Available at: http://www. gardguide.com
  • [6] Opitz, J., Timms, W. (2016). Mine water discharge quality – a review of classification frameworks. In: Proceedings of the International Mine Water Association. pp. 17–26, IMWA. Available at: https://www.imwa.info/docs/imwa_2016/ IMWA2016_Opitz_58.pdf.
  • [7] Gzyl, G., Janson, E., Łabaj, P. (2017). Mine Water Discharges in Upper Silesian Coal Basin (Poland), in Bech, J., Bini, C., and Peshkevich, M. A. (Eds.) Assessment, Restoration And Reclamation Of Mining Influenced Soils. pp. 463–486. Academic Press – Elsevier
  • [8] Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., Schulz, C. (2013). Salinisation of rivers: An urgent ecological issue. Environmental Pollution, 173, pp. 157- 167. doi:10.1016/j.envpol.2012.10.011
  • [9] Jirka, G.H., Bleninger, T., Burrows, R., Larsen, T. (2004). Management of point source discharges into rivers: Where do environmental quality standards in the new EC-water framework directive apply?. International Journal of River Basin Management, 2:3, pp. 225–233
  • [10] Cañedo-Argüelles, M. (2020). A review of recent advances and future challenges in freshwater salinization. Limnetica 39, 185–211
  • [11] World Meteorological Organization (WMO). (2013). Planning of water quality monitoring systems. Technical Report Series No. 03. No. 1113 Available at: https://library.wmo.int/doc_num.php?explnum_id=7821
  • [12] Soroko, K. Danis, M. Gola, S. Turkiewicz, W. (2015). Proposal of salt deposit utilization in the range of ventilation and aero logical natural hazards on the level of copper ore deposit within "GGP" area. CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud, nr 3 (76), pp. 115–130.
  • [13] Zieliński, S., Stefanek, P., Kostecki, S.W. (2021). Zarządzanie zasobami wody przemysłowej na przykładzie OUOW Żelazny Most. In: Bezpieczeństwo Budowli Hydrotechnicznych. Edited by Winter, J. Winter, J. Wita, A. Popielski, P. Sieinski, E. Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy, Warszawa pp. 63–72.
  • [14] Instytut OZE. (2018). Projekt budowlany: Wykonanie nowej instalacji rozprowadzającej w dnie rzeki Odra [Unpublished]. Kielce.
  • [15] Jarvis, A. P., Davis, J. E., Orme, P. H. A., Potter, H. A. B., Gandy, C. J. (2019). Predicting the Benefits of Mine Water Treatment under Varying Hydrological Conditions using a Synoptic Mass Balance Approach, Environ. Sci. Technol., 53, pp. 702–709.
  • [16] Kruse, N. A., Stoertz, M. W., Green, D. H., Bowman, J. R., Lopez, D. L. (2014). Acidity Loading Behavior in Coal-Mined Watersheds, Mine Water Environ 33, pp. 177–186. DOI 10.1007/s10230-014-0269-5.
  • [17] Mack, B., Skousen, J., McDonald, L. M. (2015) Effect of Flow Rate on Acidity Concentration from Above-Drainage Underground Mines. Mine Water Environ 34, pp. 50–58. DOI 10.1007/s10230-014-0278-4
  • [18] Jirka, G.H. (2001). Large scale flow structures and mixing processes in shallow flows. J. of Hydraulic Research 39(6), pp. 567–573. DOI:10.1080/00221686.2001.9628285
  • [19] Ritta, A. G. S. L., Almeida, T. R., Chacaltana, J. T. A., Moreira, R. M. (2020). Numerical Analysis of the Effluent Dispersion in Rivers with Different Longitudinal Diffusion Coefficients, Journal of Applied Fluid Mechanics, Vol. 13, No. 5, pp. 1551–1559, 2020. DOI: 10.36884/jafm.13.05.31015.
  • [20] Kostecki, S.W. (2008). Numerical modelling of flow through moving water-control gates by vortex method. Part I – problem formulation. Archives of Civil and Mechanical Engineering 8(3), pp. 73–89.
  • [21] Yakhot, V., Smith, L.M. (1992). The Renormalization Group, the ɛ-Expansion and Derivation of Turbulence Models. Journal of Scientific Computing, 7, No. 1.
  • [22] Sánchez-Juny, M., Triadú, A., Andreu, A., Bladé, E. (2019). Hydrodynamic Determination of the Kinematic Viscosity of Waste Brines. ACS Omega 4 (25), pp. 20987–20999. DOI: 10.1021/acsomega.9b02164
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfee6530-6acf-44e7-a0b6-e0110d0a9f1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.