PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

InAs/InAsSb superlattice infrared detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Mid-wavelength infrared detectors and focal plane array based on n-type InAs/InAsSb type- II strained layer superlattice absorbers have achieved excellent performance. In the long and very long wavelength infrared, however, n-type InAs/InAsSb type-II strained layer superlattice detectors are limited by their relatively small absorption coefficients and short growth-direction hole diffusion lengths, and consequently have only been able to achieve modest level of quantum efficiency. The authors present an overview of their progress in exploring complementary barrier infrared detectors that contain p-type InAs/InAsSb type-II strained layer superlattice absorbers for quantum efficiency enhancement. The authors describe some representative results, and also provide additional references for more indepth discussions. Results on InAs/InAsSb type-II strained layer superlattice focal plane arrays for potential NASA applications are also briefly discussed.
Rocznik
Strony
art. no. e144565
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
autor
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
autor
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
autor
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
  • NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
Bibliografia
  • [1] Smith, D. L. & Mailhiot, C. Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 62, 2545-2548 (1987). https://doi.org/10.1063/1.339468
  • [2] Osbourn, G. C. InAsSb strained-layer superlattices for long wave-length detector applications. J. Vac. Sci. Technol. B 2, 176 (1984). https://doi.org/10.1116/1.582772
  • [3] Osbourn, G. C. et al. III-V strained layer supperlattices for long-wavelength detector applications: Recent progress. J. Vac. Sci. Technol. A 5, 3150-3152 (1987). https://doi.org/10.1116/1.574857
  • [4] Tang, P. et al. 4-11 pm infrared emission and 300 K light emitting diodes from arsenic-rich InAs/InAs1-xSbx strained layer superlattices. Semicond. Sci. Technol. 10, 1177-1180 (1995). https://doi.org/10.1088/0268-1242/10/8/023
  • [5] Wilk, A. et al. Type-II InAsSb/InAs strained quantum-well laser diodes emitting at 3.5 μm. Appl. Phys. Lett. 77, 2298-2300 (2000). https://doi.org/10.1063/1.1317537
  • [6] Ciesla, C. M. et al. Suppression of Auger recombination in arsenic-rich InAs1-xSbx strained layer superlattices. J. Appl. Phys. 80, 2994 (1996). https://doi.org/10.1063/1.363157
  • [7] Lackner, D. et al. Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μm. Appl. Phys. Lett. 95, 081906 (2009). https://doi.org/10.1063/1.3216041
  • [8] Steenbergen, E. H. et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Appl. Phys. Lett. 99, 251110 (2011). https://doi.org/10.1063/1.3671398
  • [9] Connelly, B. C., Metcalfe, G. D., Shen, H. & Wraback, M. Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence. Appl. Phys. Lett. 97, 251117 (2010). https://doi.org/10.1063/1.3529458
  • [10] Donetsky, D., Belenky, G., Svensson, S. & Suchalkin, S. Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials. Appl. Phys. Lett. 97, 052108 (2010). https://doi.org/10.1063/1.3476352
  • [11] Olson, B. V. et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice. Appl. Phys. Lett. 101, 092109 (2012). https://doi.org/10.1063/1.4749842
  • [12] Höglund, L. et al. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices. Appl. Phys. Lett. 103, 221908 (2013). https://doi.org/10.1063/1.4835055
  • [13] Brown, A. E. et al. Characterization of n-type and p-type long-wave InAs/InAsSb superlattices. J. Electron. Mater. 46, 5367-5373 (2017). https://doi.org/10.1007/s11664-017-5621-7
  • [14] Kim, H. S. et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Appl. Phys. Lett. 101, 161114 (2012). https://doi.org/10.1063/1.4760260
  • [15] Ting, D. Z. et al. The emergence of InAs/InAsSb type-II strained layer superlattice barrier infrared detectors. Proc. SPIE 11002, 110020F (2019). https://doi.org/10.1117/12.2521093
  • [16] Steenbergen, E. H. InAsSb-based Photodetectors. in Mid-infrared Optoelectronics: Materials, Devices, and Applications (eds. Tournié, E. & Cerutti, L.) 415-453 (Woodhead Publishing, 2019).
  • [17] Wu, D., Durlin, Q., Dehzangi, A., Zhang, Y. & Razeghi, M. High quantum efficiency mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 114, 011104 (2019). https://doi.org/10.1063/1.5058714
  • [18] Haddadi, A., Chen, G., Chevallier, R., Hoang, A. M. & Razeghi, M. InAs/ InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection. Appl. Phys. Lett. 105, 121104 (2014). https://doi.org/10.1063/1.4896271
  • [19] Hoang, A. M., Chen, G., Chevallier, R., Haddadi, A. & Razeghi, M. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Appl. Phys. Lett. 104, 251105 (2014). https://doi.org/10.1063/1.4884947
  • [20] Haddadi, A. Chevallier, R., Chen, G. Hoang, A. M. & Razeghi, M. Bias-selectable dual-band mid-/long-wavelength infrared photo-detectors based on InAs/InAs1-xSbx type-II superlattices. Appl. Phys. Lett. 106, 011104 (2015). https://doi.org/10.1063/1.4905565
  • [21] Michalczewski, K. et al. Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate. Infrared Phys. Technol. 95, 222–226 (2018). https://doi.org/10.1016/j.infrared.2018.10.024
  • [22] Delli, E. et al. Mid-infrared InAs/InAsSb superlattice nBn photo-detector monolithically integrated onto silicon. ACS Photonics 6, 538-544 (2019). https://doi.org/10.1021/acsphotonics.8b01550
  • [23] Durlin, Q. et al. Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Phys. Technol. 96, 39-43 (2019). https://doi.org/10.1016/j.infrared.2018.10.006
  • [24] Fastenau, J. M. et al. GaSb-based infrared photodetector structures grown on Ge-Si substrates via metamorphic buffers. SPIE Proc. 11002, 110020M (2019). https://doi.org/10.1117/12.2521055
  • [25] Baril, N. et al. Bulk in AsxSb1-x nBn photodetectors with greater than 5 μm cutoff on GaSb. Appl. Phys. Lett. 109, 122104 (2016). https://doi.org/10.1063/1.4963069
  • [26] Lubyshev, D. et al. Effect of substrate orientation on Sb-based MWIR photodetector characteristics. Infrared Phys. Technol. 95, 27-32 (2018). https://doi.org/10.1016/j.infrared.2018.09.031
  • [27] Lubyshev, D. et al. T2SL Mid- and long-wave infrared photodetector structures grown on (211)A, (211)B, and (311)A GaSb substrates. SPIE Proc. 11002, 110020N (2019). https://doi.org/10.1117/12.2521066
  • [28] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [29] Ting, D. Z. et al. Development of InAs/InAsSb type-II strained layer superlattice unipolar barrier infrared detectors. J. Electron. Mater. 48, 6145-6151 (2019). https://doi.org/10.1007/s11664-019-07255-x
  • [30] Ting, D. Z., Khoshakhlagh, A., Soibel, A., Hill, C. J. & Gunapala, S. D. Barrier infrared detector, U.S. Patent 8217480 (2012).
  • [31] Ting, D. Z. et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array. Appl. Phys. Lett. 113, 021101 (2018). https://doi.org/10.1063/1.5033338
  • [32] Ting, D. Z. et al. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photon, J. 10, 1-6 (2018). https://doi.org/10.1109/JPHOT.2018.2877632
  • [33] Klipstein, P. et al. Modeling InAs/GaSb and InAs/InAsSb super-lattice infrared detectors. J. Electron. Mater. 43, 2984-2990 (2014). https://doi.org/10.1007/s11664-014-3169-3
  • [34] Vurgaftman, I. et al. Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials. Appl. Phys. Lett. 108, 222101 (2016). https://doi.org/10.1063/1.4953035
  • [35] Ting, D. Z., Soibel, A. & Gunapala, S. D. Hole effective masses and subband splitting in type-II superlattice infrared detectors. Appl. Phys. Lett. 108, 183504 (2016). https://doi.org/10.1063/1.4948387
  • [36] Ting, D. Z., Soibel, A. & Gunapala, S. D. Type-II superlattice hole effective masses. Infrared Phys. Technol. 84, 102-106 (2017). https://doi.org/10.1016/j.infrared.2016.10.014
  • [37] Klipstein, P. C. XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Proc. SPIE 6940, 69402U (2008). https://doi.org/10.1117/12.778848
  • [38] Ting, D. Z., Khoshakhlagh, A., Soibel, A. & Gunapala, S. D. Long wavelength InAs/InAsSb infrared superlattice challenges: a theoretical investigation. J. Electron. Mater. 49, 6936-6945 (2020). https://doi.org/10.1007/s11664-020-08349-7
  • [39] Ashley, T. & Elliott, C. Nonequilibrium devices for infra-red detection. Electron. Lett. 21, 451-452 (1985). https://doi.org/10.1049/el:19850321
  • [40] Ashley, T., Elliott, C. & Harker, A. Non-equilibrium modes of operation for infrared detectors. Infrared Phys. 26, 303-315 (1986). https://doi.org/10.1016/0020-0891(86)90008-4
  • [41] Ashley, T. & Elliott, C. T. Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques. Semicond. Sci. Technol. 6, C99-C105 (1991). https://doi.org/10.1088/0268-1242/6/12c/020
  • [42] White, A. Generation-recombination processes and Auger suppression in small-bandgap detectors. J. Cryst. Growth 86, 840-848 (1988). https://doi.org/10.1016/0022-0248(90)90813-z
  • [43] Ting, D. Z.-Y. et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl. Phy. Lett. 95, 023508 (2009). https://doi.org/10.1063/1.3177333
  • [44] Ting, D. Z.-Y. et al. Exclusion, extraction, and junction placement effects in the complementary barrier infrared detector. Appl. Phys. Lett. 102, 121109 (2013). https://doi.org/10.1063/1.4798551
  • [45] Sidor, D. E., Savich, G. R. & Wicks, G. W. Surface conduction in InAs and GaSb. Proc. SPIE 9616, 96160U (2015). https://doi.org/10.1117/12.2188878
  • [46] Sidor, D. E., Savich, G. R. & Wicks, G. W. Surface leakage mechanisms in III–V infrared barrier detectors. J. Electron. Mater. 45, 4663-4667 (2016). https://doi.org/10.1007/s11664-016-4451-3
  • [47] Marozas, B. T. et al. Surface dark current mechanisms in III-V infrared photodetectors. Opt. Mater. Express 8, 1419 (2018). https://doi.org/10.1364/OME.8.001419
  • [48] Ting, D. Z., Soibel, A., Khoshakhlagh, A. & Gunapala, S. D. Enhanced quantum efficiency barrier infrared detectors. U. S. Patent No. 10872987 (2020).
  • [49] Ting, D Z. Long wavelength InAs/InAsSb superlattice barrier infrared detectors with p-type absorber quantum efficiency enhancement. Appl. Phys. Lett. 118, 133503 (2021). https://doi.org/10.1063/5.0047937
  • [50] Ting, D. Z. et al. Long and very long wavelength InAs/InAsSb superlattice complementary barrier infrared detectors. J. Electron. Mater. 51, 4666-4674 (2022). https://doi.org/10.1007/s11664-022-09561-3
  • [51] Tennant, W. E. “Rule 07” revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030-1035 (2010). https://doi.org/10.1007/s11664-010-1084-9
  • [52] Pagano, T. S., Rider, D., Rud, M., Ting, D. & Yee, K. Measurement approach and design of the CubeSat Infrared Atmospheric Sounder (CIRAS). Proc. SPIE 9978, 997806 (2016). https://doi.org/10.1117/12.2235986
  • [53] Pagano, T. S. et al. CubeSat Infrared Atmospheric Sounder technology development status. J. Appl. Remote Sens. 13, 032512 (2019). https://doi.org/10.1117/1.JRS.13.032512
  • [54] Pagano, T. S., Schwochert, M. & Rafol, S. Ambient performance testing of the CubeSat Infrared Atmospheric Sounder (CIRAS). Proc. SPIE 11832, 118320D (2021). https://doi.org/10.1117/12.2593625
  • [55] Ting, D. Z. et al. Type-II superlattice mid-wavelength infrared focal plane arrays for CubeSat Hyperspectral Imaging. IEEE Photon. Technol. Lett. 34, 329-332 (2022). https://doi.org/10.1109/LPT.2022.3156048
  • [56] Ting, D. Z. et al. Development of type-II superlattice long wavelength infrared focal plane arrays for land imaging. Infrared Phys. Technol. 123, 104133 (2022). https://doi.org/10.1016/j.infrared.2022.104133
  • [57] Hyperspectral Thermal Emission Spectrometer website. NASA/Jet Propulsion Laboratory, California Institute of Technology https://hytes.jpl.nasa.gov (2023).
  • [58] Wright, R. et al. HYTI: thermal hyperspectral imaging from a CubeSat platform. Proc. SPIE 11131, 111310G (2019). https://doi.org/10.1117/12.2530821
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfe68d55-391b-44fd-af11-05d10bdc081f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.