Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The notion of a boundary belongs in the canon of the most important notions of mereotopology, the topological theory induced by mereological structures; the importance of this notion rests not only in its applications to practical spatial reasoning, e.g., in geographical information systems, where it is usually couched under the term of a contour and applied in systems related to economy, welfare, climate, wildlife etc., but also in its impact on reasoning schemes elaborated for reasoning about spatial objects, represented as regions, about spatial locutions etc. The difficulty with this notion lies primarily in the fact that boundaries are things not belonging in mereological universa of things of which they are boundaries. Various authors, from philosophers through mathematicians to logicians and computer scientists proposed schemes for defining and treating boundaries. We propose two approaches to boundaries; the first aims at defining boundaries as things possibly in the universe in question, i.e., composed of existing things, whereas the second defines them as things in a meta–space built over the mereological universe in question, i.e., we assume a priori that boundaries are in a sense ‘things at infinity’, in an agreement with the topological nature of boundaries. Of the two equivalent topological definitions of a boundary, the first, global, defining the boundary as the difference between the closure and the interior of the set, and the second, local, defining it as the set of boundary points whose all neighborhoods transect the set, the first calls for the first type of the boundary and the second is best fitted for the meta–boundary. In the text that follows, we discuss mereology and rough mereology notions (sects. 2, 3), the topological approach to the notion of a boundary and the model ROM with which we illustrate our discussion (sect. 4), the mereology approach (sect. 5), and the approach based on rough mereology and granular computing in the framework of rough mereology (sect. 6).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
241--255
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Polish-Japanese Institute of Information Technology, Koszykowa str. 86, 02-008 Warszawa, Poland
autor
- Chair of Formal Linguistics, University of Warsaw, Dobra str. 55, 00-312 Warszawa, Poland
Bibliografia
- [1] Asher N., Vieu L.: Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology. In: Proceedings IJCAI’95. Morgan Kaufmann, San Mateo CA (1995).
- [2] Aurnague, M., Vieu, L., Borillo, A.: Representation formelle des concepts spatiaux dans la langue. In: Denis, M. (ed.): Langage et Cognition Spatiale, Masson, Paris, pp 69–102 (1997).
- [3] Brentano, F.: The Theory of Categories. Nijhoff, The Hague (1981).
- [4] Casati R., Varzi A. C.: Parts and Places. The Structures of Spatial Representations. MIT Press, Cambridge, MA (1999).
- [5] Chisholm, R.: Spatial continuity and the theory of part and whole. A Brentano study. Brentano Studien 4, pp 11–23 (1992–3).
- [6] Clarke, B. L.: A calculus of individuals based on connection. Notre Dame Journal of Formal Logic 22(2), pp 204–218 (1981).
- [7] Clay, R.: Relation of Leśniewski’s Mereology to Boolean Algebra. The Journal of Symbolic Logic 39, pp 638–648 (1974).
- [8] Egenhofer, M.J., Golledge, R.G. (eds.): Spatial and Temporal Reasoning in Geographic Information Systems. Oxford University Press, Oxford UK (1997).
- [9] http://www.fws.gov/gis/data/cadastraldb/
- [10] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998).
- [11] Hayes, P. J.: The second naive physics manifesto. In: Hobbs, J. R., Moore, R. C. (eds.): Formal Theories of the Common–Sense World, Ablex, Norwood, pp 1–36 (1985).
- [12] Leśniewski, S.: Podstawy Ogólnej Teoryi Mnogości, I (Foundations of General Set Theory, I, in Polish). Prace Polskiego Koła Naukowego w Moskwie, Sekcya Matematyczno–przyrodnicza (Trans. Polish Scientific Circle in Moscow, Section of Mathematics and Natural Sciences) No. 2, Moscow (1916); see also Leśniewski, S.: On the foundations of mathematics. Topoi 2, pp 7–52 (1982) (translation by E. Luschei of the former).
- [13] Lewis, D.: Parts of Classes. Blackwell, Oxford UK (1991).
- [14] www.maponics.com/products/gis-map-data/school-boundaries/
- [15] Menger, K.: Topology without points. Rice Institute Pamphlets 27, pp 80–107 (1940).
- [16] http://www.nps.gov/gis/
- [17] Polkowski, L.: Approximate Reasoning by Parts. An Introduction to Rough Mereology. Springer Verlag, Berlin (2011).
- [18] Polkowski, L., Semeniuk-Polkowska, M.: Boundaries, borders, fences, hedges. Fundamenta Informaticae, 129(1-2), pp. 149–159, DOI 10.3233/FI-2014-966 (2014).
- [19] Polkowski, L., Skowron, A.: Rough mereology. In: Proceedings of ISMIS’94. Lecture Notes in Artificial Intelligence 869, Springer Verlag, Berlin, pp 85–94 (1994).
- [20] Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15 (4), pp 333–365 (1997).
- [21] Randell D., Cui Z., Cohn A. G.: A spatial logic based on regions and connection. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning KR’92. Morgan Kaufmann, San Mateo, CA, pp 165–176 (1992).
- [22] Simons, P.: Parts. A Study in Ontology. Clarendon Press, Oxford UK (1987, repr. 2003).
- [23] Smith, B.: Mereotopology: A theory of parts and boundaries.Data and Knowledge Engineering 20, pp 287–303 (1996).
- [24] Smith, B.: Boundaries: An essay in mereotopology. In: Hahn, L. (ed.): The Philosophy of Roderick Chisholm. La Salle: Open Court, pp 534–561 (1997).
- [25] Sobociński, B.: Studies in Leśniewski’s Mereology. Yearbook for 1954-55 of the Polish Society of Art and Sciences Abroad V, pp 34–43 (1954–5).
- [26] Tarski, A.: Les fondements de la géométrie des corps. Supplement to Annales de la Société Polonaise de Mathématique 7, pp 29–33 (1929).
- [27] Tarski, A.: Zur Grundlegung der Booleschen Algebra. I. Fundamenta Mathematicae 24, pp 177–198 (1935).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfe2254d-8861-47ed-b4b0-07502ad4766e