PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Investigation of the Stiffness of the FPR Composite Mast of an A-Class Catamaran (A-Cat) with Sensitivity Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an experimental and numerical investigation of the stiffness of an A-class catamaran (A-Cat) mast. The structure has a constant, prismatic cross-section and is made from fibre-reinforced plastic (FRP) multilayered laminate. The material parameters of the structure were identified. Then, static tests were conducted using a simply supported beam configuration, where supports were established at the beginning of the mast length and at the rigging attachment point. A computational model of the mast was created and analysed using the finite element method (FEM). A sensitivity analysis was performed on a validated model, from which sensitivity coefficients were obtained. On this basis, it was possible to determine how the structure could be modified to obtain the expected deformation, i.e. the maximum displacement of a selected point on the mast or the shape of the mast bending under a given load.
Rocznik
Tom
Strony
132--141
Opis fizyczny
Bibliogr, 28 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdansk, Poland
  • Gdansk University of Technology, Faculty of Ocean Engineering and Ship Technology, Gdansk, Poland
Bibliografia
  • 1. Larsson L, Eliasson R, Orych M. Principles of yacht design. International Marine/Ragged Mountain Press; 2014.
  • 2. Killing S, Hunter D. Yacht design explained: A boat owner’s guide to the principles and practice of design. International Marine/Ragged Mountain Press; 2012.
  • 3. Skene NL. Elements of yacht design. Dodd, Mead & Company; 1977.
  • 4. Perry R. Yacht design according to Perry: My boats and what shaped them. Sheridan House; 2008.
  • 5. Graf K, Freiheit O, Schlockermann P, Mense JC. VPP-driven sail and foil trim optimization for the Olympic NACRA 17 foiling catamaran. J Sail Technol 2020. https://doi.org/10.5957/jst/2020.5.1.61.
  • 6. Knudsen SS, Marimon Giovannetti L, Legarth BN, Walther JH. Dynamic fluid structure interaction of NACRA 17 foil. J Mar Sci Eng 2024. https://doi.org/10.3390/jmse12020237.
  • 7. Masuyama Y, Ogihara M. Science of the 470 sailing performance. J Sail Technol 2020. https://doi.org/10.5957/jst.2020.5.1.20.
  • 8. Lin S, Ma Y, Zheng W, Pan Z. Numerical simulation of mutual influence in 470 sailing hull and rudder at different hull speeds. Proceedings of the 13th Conference of the International Sports Engineering Association, 2020. https://doi.org/10.3390/proceedings2020049134.
  • 9. Cella U, Cucinotta F, Sfravara F. Sail plan parametric CAD model for an A-class catamaran numerical optimization procedure using open source tools. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds) Advances on Mechanics, Design Engineering and Manufacturing . Lecture Notes in Mechanical Engineering. Springer, Cham 2017. https://doi.org/10.1007/978-3-319-45781-9_55.
  • 10. Keller T, Henrichs J, Hochkirch K, Hochbaum AC. Numerical simulations of a surface piercing A-class catamaran hydrofoil and comparison against model tests. J Sail Technol 2017. https://doi.org/10.5957/jst.2017.04.
  • 11. Samson L, Kahsin M. A method to determine the tightening sequence for standing rigging of a mast. Polish Marit Res 2019. https://doi.org/10.2478/pomr-2019-0065.
  • 12. Gama Caetano D, Scandiuzzi Valença de Castro D, Giron Camerini C, Kotik H G, Alho A. Failure analysis of a CFRP mast of a racing sailboat. Eng Fail Anal 2023. https://doi.org/10.1016/j.engfailanal.2023.107263.
  • 13. Ghelardi S, Conti C, Gaiotti M, Rizzo C M, Paci M. Scantling assessment of large yacht rigs using carbon-fiber and aluminum masts. Ocean Eng 2019. https://doi.org/10.1016/j.oceaneng.2019.106480.
  • 14. Mechin P-Y, Keryvin V. Analysis on the key parameters driving the mast stiffness accuracy to improve sail design using fluid/structure simulation with beam elements. J Sail Technol 2024. https://doi.org/10.5957/jst/2024.9.1.57.
  • 15. Samson L, Kahsin M. A method to determine the tightening sequence for standing rigging of a mast. Polish Marit Res 2019. https://doi.org/10.2478/pomr-2019-0065.
  • 16. Bak S, Yoo J. FSI analysis on the sail performance of a yacht with rig deformation. Int J Nav Archit Ocean Eng 2019. https://doi.org/10.1016/j.ijnaoe.2019.02.003.
  • 17. Bak S, Yoo J, Song C Y. Fluid-structure interaction analysis of deformation of sail of 30-foot yacht. Int J Nav Archit Ocean Eng 2013. https://doi.org/10.2478/IJNAOE-2013-0131.
  • 18. Sacher M, Leroux J-B, Nême A, Jochum C. A fast and robust approach to compute nonlinear fluid-structure interactions on yacht sails – Application to a semi-rigid composite mainsail. Ocean Eng 2020. https://doi.org/10.1016/j.oceaneng.2020.107139.
  • 19. Augier B, Bot P, Hauville F, Durand M. Experimental validation of unsteady models for fluid structure interaction: Application to yacht sails and rigs. J Wind Eng Ind Aerodyn 2012. https://doi.org/10.1016/j.jweia.2011.11.006.
  • 20. Lou B, Cui H. Fluid–structure interaction vibration experiments and numerical verification of a real marine propeller. Polish Marit Res 2021. https://doi.org/10.2478/pomr-2021-0034.
  • 21. Kozak J, Tarełko W. Case study of masts damage of the sail training vessel POGORIA. Eng Fail Anal 2011. https://doi.org/10.1016/j.engfailanal.2010.11.016.
  • 22. Song C-Y. Enhancement of shipboard radar mast vibration performance by adopting design sensitivity analysis and topology optimization. Ocean Eng 2025. https://doi.org/10.1016/j.oceaneng.2024.120253.
  • 23. Ferenc T. Multiparameter sensitivity analysis of a GFRP composite footbridge of a sandwich structure and U-shaped cross-section. Compos Struct 2020. https://doi.org/10.1016/j.compstruct.2020.112793.
  • 24. Ferenc T, Gierasimczyk R, Mikulski T. Stress assessment of a steel bullet LPG tank under differential settlement based on geodetic measurements and sensitivity analysis. Polish Marit Res 2024. https://doi.org/10.2478/pomr-2024-0056.
  • 25. Harris B. Engineering composite materials. The Institute of Materials, London; 1999.
  • 26. Lemaitre J. Handbook of materials behavior models. Academic Press; 2001.
  • 27. Tsai SW, Wu EM. A general theory of strength for anisotropic materials. J Comp Mater 1971. https://doi.org/10.1177/002199837100500106.
  • 28. Tsai SW, Hahn HT. Introduction to composite materials. Technomic Publishing Co.; 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfe18d34-bf78-4a03-a383-fb7396e5e16b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.