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Abstract

Fuzzy clustering is a well-established method for identifying the structure/fuzzy partition-

ing of Takagi-Sugeno (TS) fuzzy models. The clustering algorithms require choosing the

fuzziness parameter m. Prior work in the area of pattern recognition shows, that a suit-

able choice of m is application- dependent. Yet, the default of m=2 is commonly chosen.

This paper examines the suitable choice of m for identifying TS models. The focus is on

models that use the classifiers resulting from fuzzy clustering as multi-dimensional mem-

bership functions or their projection and approximation. At first, the differentiability and

grouping properties of the fuzzy classifiers are analyzed to make a general recommenda-

tion of choosing m∈(1;3). Besides, the effect of the cluster number c on the classification

fuzziness is examined. Finally, requirements that are specific to TS modeling are intro-

duced, which narrow down the suitable range for m. Building on algorithm analysis and

four case studies (function approximation, a vehicle engine and an axial compressor ap-

plication for nonlinear regression), it is demonstrated that choosing m∈(1;1.3) for local

and m∈(1;1.5) for global estimation will typically provide for good results.

1 Introduction

This paper examines the choice of the uncer-

tainty parameter in clustering-based Takagi-Sugeno

(TS) fuzzy modeling. Theoretical constraints and

experience-based narrower bounds will be pre-

sented.

Takagi-Sugeno (TS) fuzzy modeling [1] can

be used to provide quantitative nonlinear models

for simulation, prediction, control, diagnostics and

other applications. TS models can be derived from

a physical model by the sector nonlinearity method

[2],[3] or by Taylor series expansion in several

points and suitable partitioning [4],[5]. However,

physical models are not always available and their

derivation can be costly. Alternatively, TS models

can be identified from input/output data in case suit-

able observations of the system behavior are avail-

able. Simple grid-based partitioning often results

in a large amount of rules due to the curse of di-

mensionality. An alternative is to use a greedy

growth strategy such as the axis-parallel dividing

LOLIMOT algorithm [6]. The advantage is its sim-

plicity and the prediction- quality-guided division

process. The drawback is that it will not produce

parsimonious models in case the nonlinearities are

not axis-aligned. A non-axis-aligned dividing ver-

sion of the algorithm has been proposed, recently

[7].

Alternatively, fuzzy clustering in the input, out-

put or product space can be used for identifying

the fuzzy partitions. The resulting (truly) multi-

dimensional partitioning (in case of input or prod-

uct space clustering) permits to develop parsimo-

nious model representations with excellent approx-

imation capability [8],[9]. The major disadvantage
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is that this results in difficulties to interpret mod-

els. For this reason, the membership functions (MF)

are often projected to the coordinate axis and ap-

proximated by scalar functions such as trapezoids

or Gaussians. This provides for better interpretabil-

ity at the cost of inducing approximation errors.

Fuzzy-c-means (FCM), Gustafson-Kessel (GK)

and Gath-Geva (GG) algorithms are often used for

clustering-based fuzzy identification. These algo-

rithms require an a-priori specification of the fuzzi-

ness parameter (weighting exponent) m and the

number of clusters c. For determining c, clus-

ter validity indices [10-13] or cluster-merging algo-

rithms [12],[14] can be used, and are widespread in

use. The fuzziness parameter adjusts the degree of

fuzziness of the clusters. In case of TS modeling,

fuzzy clustering is in general carried out using m=2

without further consideration: Sin and de Figuero

[15] and Laukonen et al. [16] for FCM, Babuska

[11:p.58; 87] and Nelles [6: p.146] for FCM- and

GK-, Setnes [17] for GK- and Abonyi et al. [18,19]

for GG-based approaches.

It is known, that the resulting cluster centers de-

pend little on m if the clusters have similar geome-

try and density [20]. However, the shape of the MF

depends significantly on m, such that m can majorly

affect the quality of the resulting fuzzy model - no

matter whether the clustering MF are used as is or

projected and approximated. If MF shape and lo-

cation are succeedingly optimized, the commonly

applied derivative-based optimization routines still

rely on good initial values due to the risk of lo-

cal convergence. This motivates to look for avail-

able methods on choosing m. In the area of fuzzy

clustering and pattern recognition this problem has

been addressed for grouping and general classifica-

tion problems. A literature review shows that for

this field of application no common theoretical ba-

sis exists. A wide range of values between 1+ and

101 is used. m=2 is often specified as appropriate

(default) choice [10],[21-24]. However, it was rec-

ognized that this may not be suitable for all appli-

cations [21], [25]. The dependency of the fuzzi-

ness of the partitioning, not only on m, but also on

the number of clusters [26],[27], makes the choice

more difficult.

This contribution addresses choosing m in

clustering-based TS system identification. It is

shown that choosing m∈(1;3) provides for contin-

uously differentiable MF. This property transfers to

the TS system, as the local models are continuously

differentiable. Continuous differentiability simpli-

fies the application of derivative-based optimization

methods. These can be used for identifying nonlin-

ear output error (NOE)-type fuzzy models or to tune

the partitioning to reduce the prediction error of the

model [28],[29]. Moreover it will be shown that

m∈(1;3) provides for membership functions with a

flat top at the center, which is desired for partition-

ing application. For m>3 the function has a sharp

peak at the center. Besides these general consider-

ations, specific requirements for TS model identifi-

cation can be considered to narrow down the suit-

able range for m: “Reactivation” effects [7],[22]

(the membership declines with rising distance from

a center, but then starts to incline again) are reduced

by a small choice of m. The same is true for unintu-

itive interpolation effects in “V-type situations” [30]

of the local models. As m adjusts the fuzziness, a

small choice of m means little interaction between

the local models. That permits to interpret the local

models as local linearization of the original system.

On the contrary, a larger value of m permits better

approximation if global estimators are used. Such

analysis will be used to derive a reduced range for

m. Summarizing, the optimal choice of m depends

on the application, and using a default of m=2 may

not exploit the full potential of the modeling ap-

proach.

Table 1. Acronyms

Acronym Meaning

FCM Fuzzy-c-means (algorithm)

GE Global (parameter) estimation

GG Gath-Geva (algorithms)

GK Gustafson-Kessel (algorithm)

LE Local (model parameter) estimation

MF Membership function

MSE Mean squared error

NOE Nonlinear output-error (model)

PWA Piecewise affine (model/system)

TS Takagi-Sugeno (model/system)

WLS Weighted least squares (algorithm)

This paper is organized as following: The next

section summarizes FCM and GK clustering algo-

rithms. Section 3 introduces the basics of TS mod-

eling. Section 4 surveys prior work on choosing
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m. Section 5 addresses limiting behavior, grouping

strategy, classifier differentiability and TS model

specific requirements dependent on m. Constraints

and guidelines for an appropriate choice of m are

presented, which are the major results of this contri-

bution. Results from numerical case studies on non-

linear function approximation and regression are

presented in section 6. The final section summa-

rizes the work. The appendix contains the proof

for the differentiability theorem. Table I records the

acronyms used in this paper.

2 Fuzzy-c-Means and Gustafson-

Kessel Algorithm

Given a set X of N observations xk ∈ ℜM,k =
1, ...,N, each covering M features, the FCM al-

gorithm [10],[31] locates c cluster centers vi ∈
ℜM, i = 1, ...,c and determines all c×N member-

ships µi(xk) := µi,k ∈ [0;1] for the chosen fuzziness

parameter 1 < m < ∞ such that the cost function

(weighted within groups sum of squared errors)

JFCM =
N

∑
k=1

c

∑
i=1

(µi,k)
m ‖xk− vi‖

2
Ai

(1)

is minimized subject to

c

∑
i=1

µi,k = 1∀k (2)

N

∑
k=1

µi,k > 0∀i. (3)

The purpose of the equality constraint (2) is to avoid

the trivial solution µi,k = 0∀k, i. The inequality

constraint (3) prevents empty clusters. The opti-

mization problem is solved iteratively by alternately

solving two reduced problems: For fixed µi,k, the

optimal cluster centers

vi =
∑N

k=1(µi,k)
m · xk

∑N
k=1(µi,k)m

∀i ∈ {1, ...,c} (4)

result from solving the corresponding uncon-

strained optimization problem. The optimal mem-

berships

µi,k =

[

∑c
j=1

(

||xk−vi||
2
Ai

||xk−v j||
2
A j

)
1

m−1

]−1

∀i ∈ {1, ..,c},k ∈ {1, ...,N}

(5)

are obtained by fixing the vi and solving the corre-

sponding constrained optimization problem due to

(2). If xk coincides with vi full membership results,

while coinciding with v j means no membership to

the i-th cluster. The FCM uses the same distance

norm || · ||Ar
for all clusters. Typical choices are

Euclidean, Mahalanobis or Minkowski/Lp distance.

The GK algorithm minimizes the same cost func-

tion as the FCM, but individually adapts the dis-

tance norm for each cluster: It uses an inner prod-

uct norm, where the form matrices Ar are computed

from the local fuzzy scatter (or fuzzy covariance)

matrices. The prototypes vi and the memberships

µi,k are updated with the same formulae as the FCM

(4), (5). The c×N memberships µi,k can be noted

as a matrix U = [µi,k] (c-partitioning) and the cluster

centers as V = [vr]. For details on FCM and GK al-

gorithm the reader is referred to e.g. [10],[11],[12].

3 Takagi-Sugeno Fuzzy Models

and Identification

Takagi-Sugeno (TS) fuzzy models [1] offer a fuzzy-

rule-based description for systems. A TS rule of

an input/output model is given as: If x is Ai Then

yi=fi(x). The model output y is inferred by taking

the weighted average of the rule outputs yi:

y(x) =
∑c

i=1 αi(x) · yi(x)

∑c
i=1 αi(x)

=:
c

∑
i=1

φi(x) · yi(x) (6)

where c is the number of rules and φi the i-th fuzzy

basis function (FBF). The degree of fulfillment/rule

activation is simply the membership degree αi = µi

[11]. TS models in state space representation follow

correspondingly. Input/output models in discrete-

time representation are used for system identifica-

tion purposes in general. Each TS rule’s antecedent

defines the fuzzy validity region of the correspond-

ing local model yi. Strictly speaking, each local

model is weighted by its FBF.

Data-driven modeling includes the major tasks

of partition and conclusion identification. Com-

monly, multi-input-multi-output (MIMO) problems

are treated as separate multi-input-single-output

(MISO) problems: Nonlinear cause-effect relation-

ships may be different for the outputs such that de-

composition into MISO models enables parsimo-

nious models. The local models are usually chosen

as affine functions
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ŷi(x) = [a1,i; ...;an,i;a0,i][x
T ;1]T = ΘT

i x̃. (7)

due to the better approximation capability than for

linear ones. If the partitions have been determined,

the structure of the conclusion function is selected.

Then the parameters Θi of the local models are

identified. This can be done separately for each lo-

cal model by solving the problem

Θ̂i : argmin
Θi

N

∑
k=1

wi(k) · (y(k)− ŷi(k,Θi))
2

(8)

This is referred to as ‘local estimation’ (LE). The

ordinary weighted least squares (WLS) method can

be used and provides for the solution

Θ̂i = [ΦTWiΦ]−1ΦTWiY (9)

with Φ = [x̃T
k ],Wi = diag[wi,k],Y = [yk] and k =

1, ...,N. Alternatively, the parameters of all local

models can be computed simultaneously by solving

the problem

Θ̂ : argmin
Θ

N

∑
k=1

(y(k)− ŷ(k,Θ))2
; Θ̂ :=

[

Θ̂1; ...; Θ̂c

]

.

(10)

This is referred to as ‘global estimation’ (GE). The

WLS can be used to solve problem (10). Weighting

strategies include using the memberships assigned

by fuzzy clustering wi,k := µi,k. Alternatively, the

center positions resulting from clustering can be

kept, m be changed in (5) and the resulting mem-

berships be used as weights. Typically, the cluster-

ing would be conducted with the same or a larger

m than used for the TS model. Alternatively, bi-

nary memberships can be assigned by using α-level

sets of the memberships resulting from clustering.

Excluding data from the interpolation regime may

improve the local estimation. More sophisticated

methods for (dynamic) system identification are de-

scribed e.g. in [32].

The choice of m for clustering affects the group-

ing philosophy: If a cluster should only comprise

very similar data, m should be chosen larger: In the

neighborhood of its center, the membership (5) to

the cluster declines the faster the larger m is chosen.

For m→ ∞, all memberships except for the centers

approach 1/c. Therefore, larger values of m result

in small regions with high membership around each

cluster center. A membership of ≈ 1/c to all clus-

ters is assigned to data outside these regions. This

means that the data is not significantly assigned to a

cluster in the majority of the feature space. If clus-

tering is used to partition X into c regions as e.g.

required for TS modeling, regions of high mem-

bership should predominate. This is achieved by

choosing m close to 1.

4 Prior Methods for Choosing the

Fuzziness Parameter

This section surveys methods to choose m in fuzzy

clustering that were identified in a literature review.

Table II provides for a summary.

Bezdek et al. [33] suggest m ∈ [1;30] and in partic-

ular m ∈ [1.5;3] from experience with FCM.

The FCM cost functional decreases strictly mono-

tone with m (evaluated at optimal pairs U,v), i.e. its

derivative

∂J(m,U,v)

∂m
=

N

∑
k=1

c

∑
i=1

(µi,k)
m log(µi,k)‖xk− vi‖2

(11)

is negative for all m > 1, however the rate of change

is not uniform [10, p. 73]. McBratney and Moore

[34] suggest choosing the argument m that maxi-

mizes (−∂J/∂m)
√

c. Multiplication with
√

c takes

care of their expectation that m should be smaller

for larger c. In the 2-dim. case studies with both

well and not well separated clusters, a value of

m ∈ [1.9;2.8] was determined to be useful.

Choe and Jordan [35] propose choosing m for the

FCM by using fuzzy decision theory. Maximizing

the number of data points within a cluster is de-

fined as a fuzzy goal and minimizing the sum of

squared errors within a cluster is defined as a fuzzy

constraint. m is chosen as the argument that corre-

sponds to the maximum of the membership function

resulting from intersecting all fuzzy part-objectives.

In a 2-dim. case study with two poorly separated

classes m= 1.1. . . 40 was tested and m=12 deter-

mined as optimum.

Pal and Bezdek [27] state that very high or low val-

ues of m may influence cluster validity indices that

use memberships from the FCM. A usual range of

m ∈ (1;5) is mentioned with m=2 being the most

common choice. In the 4-dim. case studies with 3
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Table 2. Overview On Methods to Choose Fuzziness

Ref. Bounding

of m

Asse

ssed d

infor-

ma-

tion

Cluster

Algo-

rithm

m tested in

case studies

m deter-

mined case

studies

Application context

[33] IV[1.5;3] EX FCM 1.25. . . 2 - General grouping

[34] SV CR FCM 1.1. . . 3.5 1.9. . . 2.8 Classification

[35] SV CR FCM 1.1. . . 40 12 Decision function estimation

[27] IV[1.5;2.5] EX FCM 1.005. . . 7 - General grouping

[36] SV RD FCM 1. . . 7 2.92; 2.5 Mamdani model rule genera-

tion

[37] SV CR FCM ≥ 1.5 5 Partitioning for TS model

[38] IV[1.5;2.5] CR FCM 1.5. . . 3.3 - General grouping

[39] IV[1.6;3],

SV

RD SMFC ≥ 1.2 - Classification (image)

[25] UB, SV RD FCM 1. . . 1.2; 1.7;

2.5

1.112; 1.17;

1.25

Grouping/classification (gene

expression)

[45] SV CR FCM,

MCV

1. . . 8 4.47 Mamdani model rule genera-

tion

[21] UB RD FCM - 1.6. . . 3.2 Grouping/classification

[26] SV CR FCM 1.2. . . 2.5 1.67; 1.9 Mamdani model rule genera-

tion

[41] SV CR FCM 1.05. . . 3 1.05 Grouping/classification (gene

expression)

[42] SV CR FCM 1.1. . . 3 1.1. . . 2 Classification (image)

[40] UB CR FCM 1.02. . . 2 1.2. . . 1.55 Grouping/classification (gene

expression)

[46] SV CR FCM - 1.41; 1.71;

101

Modeling/approximation

Here IV (1; 3) CD FCM,

GK,

PCM,

PGK

1. . . 10 1.05. . . 1.3/1.5 TS modeling/approximation

UB = Upper bound, IV = Interval, SV = Single value; EX = Experience, RD = Raw data, CR = Clustering

result, CD = Classifier description; FCM = Fuzzy-c-Means, SMFC = Supervised Mahalanobis fuzzy

classifier, GK = Gustafson-Kessel algorithm, PCM = Possibilistic FCM, PGK = Possibilistic GK, MCV =

Minimum Volume Clustering
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and 4 not well separated classes m∈ [1.5;2.5] is de-

termined as suitable choice. Emami et al. [36] used

FCM and determine the trace of the scatter matrix

K = trace

(

N

∑
k=1

[

(xk− x̄) · (xk− x̄)T
]

)

; x̄ =
N

∑
k=1

xk.

(12)

They suggest choosing a value of m that corre-

sponds to approximately K/2. Mamdani-type fuzzy

modeling is addressed: In 2- and 3-dim. case stud-

ies with 8 and 6 clusters, they determined m=2.92

and m=2.5, respectively.

Chen and Wang [37] used FCM for determining

partitions of TS models with Gaussian membership

functions. They suggest increasing m in 0.1 incre-

ments starting from 1.5 until the standard deviations

of the clusters (calculated from the fuzzy covariance

matrices of the clusters) are large enough such that

the resulting membership functions will have suf-

ficient overlap. In 1- and 2-dim. case studies on

function approximation with 2 and 4 clusters m=4

and m=5 are determined, respectively.

Gao et al. [38] propose choosing m such that both

JFCM and the partition entropy Hm are minimized:

m∗= arg
m

(max(min(µG(m),µC(m))))with (13)

µG(m) = exp(−α · JFCM/max
m

JFCM),e.g.α = 1.5

(14)

µC(m) = (1+β ·Hm/max
m

Hm)
−1,e.g.β = 10. (15)

Requiring a minimum clustering tendency in the

data and excluding cases with well separated clus-

ters, they suggest m ∈ [1.5;2.5]. In two case studies

m∗ ∈ [1.5;3.3] and m∗ ∈ [1.7;2.1], respectively, are

determined. They conclude that the better the sepa-

rability of classes is, the higher the value of m that

should be chosen.

Deer and Eklund [39] require that the memberships

of a pixel in an image should reflect the true pro-

portions of the contributing classes in the pixels to

determine a value for m. They conduct studies un-

der a linear mixing assumption and derive values

m ∈ [1.3;3]. Their studies refer to a FCM that uses

a local Mahalanobis distance metric for each class.

Dembl and Kastner [25] analyze complex gene ex-

pression/microarray data and make the assumption

that the cluster centers will be close to some genes.

They studied the set

Ym = {(d2(xi;xk))
1/(m−1);k 6= i;k, i = 1;2; ...;N}

(16)

of distances between the data sets and observed that

values of m that provide FCM memberships close to

1/c lead to a coefficient of variation of Ym close to

0.03 dim(x). Starting from m=2, they numerically

search for an upper bound mub for m such that

mub : cv{Ym}= σ(Ym)/Ȳm ≈ 0.03 ·dim(x) (17)

holds. Secondly, they suggest choosing 1 < m ≤
2 to obtain high memberships for data that are

strongly related to clusters:

mub ≥ 10 : m := 2 and

mub < 10 : m := 1+mub/10
(18)

They demonstrated their method in three case stud-

ies with dim(x) ∈ {13;16;60},c ∈ {10;16;20} and

determined m ∈ {1.25;1.17;1.112}, respectively.

Mller [40] argues that too large values of m cause

empty/missing clusters. He suggests to upper

bound m by the value for which all lower values

do not lead to missing clusters. In case studies on

microarray/gene expression data, FCM was applied

and upper bounds between 1.2 and 1.55 are deter-

mined. He refers to problems with high-dim. data,

small sample size and low values of m (<1.5. . . 2).

Yu et al. [21] derive two rules for upper bounding

m by analyzing the optimality properties of fixed

points of the FCM:

Rule 1 : m≤ min(M,N−1)
min(M,N−1)−2

,

if min(M,N−1)≥ 3
(19)

with the number of observations N and the dimen-

sionality of the data M and

Rule 2 : m≤ (1−2 ·λmax(FU∗))
−1,

if λmax(FU∗)< 0.5
(20)

with

FU∗ =
HT H

N
;

H =
[

x1−x̄
||x1−x̄|| ;

x2−x̄
||x2−x̄|| ; · · · ;

xN−x̄
||xN−x̄||

] . (21)
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For λmax(FU∗)≥ 0.5 any m > 1 is admissible. They

tested their rules with data sets from the UCI Repos-

itory of Machine Learning data base with 3 to 26

classes. Upper bounds in the range of m ∈ [1.6;3.2]
were obtained.

Zeinali and Notash [26] argue that m should be cho-

sen to reflect the level of uncertainty in the data.

The FCM is used to derive trapezoidal MF and com-

plete a Mamdani-type fuzzy model. The initial lo-

cation of the cluster centers is kept and m is cho-

sen to minimize the mean squared prediction error

of the model. In two modeling case studies with 8

clusters m=1.67 and m=1.9 are determined.

Yang et al. [41] used Simulated Annealing to deter-

mine c and m for gene expression/microarray data.

The optimization target is the sum of the FCM cost

functional and one of 4 validity indices such as the

Xie-Beni index. A case study searches in the range

of m ∈ [1.05;3] and determines a lower bound of

m=1.05.

Okeke and Karnieli [42] suggest choosing m such

that the original data set can be well predicted from

the result of a FCM classification. They increment

m starting from m=1.1 until a chosen upper bound

for m such as 3, 5, 7 (up to 30) is reached. In case

studies values m ∈ [1.1;2] were determined.

Kung and Su [43] examine the limiting behavior of

Fuzzy-c-Regression Modeling (FCRM) for m→ 1+
and m → ∞. In case studies they use fixed values

m ∈ {1.1;2;7}.

Sugeno and Yasukawa [44] used m=2 with the FCM

in case studies on identification of Mamdani-type

fuzzy models and refer to m ∈ [1.5;3] as the usual

choice. Zarandi and Esmaeilian [45] use a Genetic

Algorithm to determine m for the use in Mamdani-

type fuzzy models. In a case study, m=4.47 was

computed as the optimum within the bounds of

m ∈ [1;8].

In the context of Takagi-Sugeno modeling, fuzzy

clustering is in general carried out using m=2 with-

out investigating the impact of this choice, e.g.

[6],[11],[15],[16],[17],[18],[19]. Alata et al. [46]

used the FCM with m=2 and succeedingly a Genetic

Algorithm to optimize m wrt. the prediction error.

In three modeling case studies the optimized values

are m ∈ {1.4;1.7;101}. In [8] the impact of choos-

ing m ∈ (1;10] on the prediction error is examined.

For FCM- or GK-based identification of dynamical

models, the general trend of the approximation er-

ror decreasing with m was shown.

Different approaches are taken in [22],[47]: The

FCM-cost functional for m=2 is extended by an ad-

ditional term in [47] to enforce broader areas of

distinct memberships. In [22], the objective func-

tion of the clustering algorithm is changed to amend

problems with reactivation. As the fuzziness pa-

rameter is globally effective, in [48] a method for

local adaptation of m is proposed in order to answer

locally deviating requirements that can occur when

modeling heterogeneous systems. In [20], type-II-

fuzzy sets are used to manage uncertainty in m; for

this purpose an upper and lower limit for m can be

specified.

5 Theoretical Constraints and Rec-

ommendations on Choosing m

The previous paragraph recorded different

methods to choose m from various application ar-

eas. In this section, choosing for clustering-based

TS fuzzy model identification is discussed.

5.1 Introductory Example

Eq. (5) shows that the fuzziness does not only de-

pend on m, but also on c: Each cluster contributes

a summand. Hence, if moving away from a pro-

totype, µ declines earlier and faster if c. is in-

creased. Evidently, the impact of c on the fuzzi-

ness increases with m and becomes significant for

larger values. A simple example is used to illus-

trate this: A succeeding number of prototypes is

added around a prototype v1 = 0 while the effect on

the membership assignment is monitored. Arrange-

ments with c = 2;3;4;9;27 prototypes are studied

for m = 1.5;2;3;5. Figure 1 records the results if

– (a) one additional center is placed at x1 = 1 (1-

dim. Case, “+“),

– (b) two additional centers are placed at x1 =±1

(1-dim. Case, “*“),

– (c) 3 additional centers are placed at x =
(1,0),(1,1),(0,1) (2-dim. Case, “•“),

– (d) 8 additional centers are placed at x = (1,0),

(1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1), (1,-1)

(2-dim. Case, “⋄“), and
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– (e) the centers are as in d) plus the same 3x3 grid

of centers being copied and shifted by 1 and -1

in direction of x3 (3-dim. Case, “◦“).

Figure 1. Shape of membership function with

center in 0 for different numbers of neighbouring

centers and different choices of fuzziness

parameter: m = 1.5;2;3;5(top to bottom).

The Euclidean distance norm is used. For

m=1.5 (or smaller), distinct memberships prevail

and areas with indistinct membership have minor

extension. Reactivation and the dependency of the

classifier fuzziness on c are negligible. For m=2,

increasing c (for a given prototype distribution)

causes the membership functions to narrow down:

Along the connection line between both centers in

Figure 1, the membership to v1has halved at mid

distance for c=2 but already at quarter distance for

c=27. This effect is in general not desirable. For

m>2, the described effects occur more pronounced.

Figure 2. JFCM for different choices of m: for

fixed position of v1 = 0 and varying position of v2

(blue) or for placing both v1 and v2 at X̄ = 0.5 (red)

5.2 Limiting Behavior

The FCM approaches the (hard) c-means algorithm

for m→ 1. For m→ ∞, all memberships except at

the centers approach 1/c: limm→∞ µi(x) = 1/c∀x 6=
vr;r = i, j. The statement that all centers vi “ap-

proach” the (total) mean X̄ of the observations X

[27] is however not valid in general, as counterex-

amples show: Consider the case in which a data set

X that consists of a point at 0 and one at 1 has to

be clustered into two groups. Placing a cluster cen-

ter at each point, provides exactly for JFCM=0 while

placing both centers into X̄ = 0.5 yields JFCM>0 for

finite m. Then consider X = {−0.1;0.1;0.9;1.1}for

c=2 clusters. Placing cluster centers at 0 and 1, re-

sults in a lower JFCM for finite m than placing them

at X̄ = 0.5, see Figure 2. This means that the clus-

ter centers do not necessarily approach X̄with rising

value of m.

5.3 Distance Weighting and Grouping

Strategy

Probabilistic MF (5) assess a relative distance

d̃i, j := di/d j, which is weighted by an exponen-

tial term (d̃i, j)
2/(m−1) =: (d̃i, j)

β. For 1<β<∞ (i.e.

1<m<3) the exponent decreases the effective dis-
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tance for 0 < d̃i, j < 1 and increases it for d̃i, j > 1

as compared with the unweighted distance, i.e. an

exponent of 1 (β=1, m=3) (Figure 3). The half-way

inter-center distance d̃i, j = 1 is not affected by the

weighting. Hence, points closer to the reference vi

than to v jare assigned a higher membership to vi

than in the case of unweighted distance, and points

further away a lower one. This provides for an

enlarged region of significant membership assign-

ments for smaller choices of m. Hence, choosing

a small value of m supports fuzzy partitioning as

required for fuzzy modeling. On the contrary, for

0< β<1 (i.e. 3<m< ∞) the exponent increases the

effective distance for 0 < d̃i, j < 1 and decreases it

for d̃i, j > 1. Hence, points closer to the reference vi

than to v j are assigned a lower membership to the

reference than in the unweighted case. This pro-

vides for faster declining membership values with

rising distance from the prototype. Such a param-

eterization supports the objective to just group data

of high similarity. The limit behavior is that for β

→ 0 (i.e. m→ ∞) a cluster’s extension reduces just

to its prototype.

5.4 Differentiability-based Criterion

Understanding the differentiability property of MFs

and therefore of the entire TS model dependent on

m sets the base for applying derivative-based pa-

rameter optimization methods. These can be used

to efficiently identify NOE-models or a-posteriori

tune model parameters. Besides, differentiability

has a geometrical interpretation: Losing the prop-

erty of continuous differentiability means losing the

property of a smooth function graph. This moti-

vated the derivation of the following

Theorem 1: The function

µi(x) =





c

∑
j=1

(

||x− vi||
2
Ai

||x− v j||
2
A j

)
1

m−1





−1

(22)

with x,vi, v j ∈ ℜM,c ∈ N+,m ∈ ℜ and an inner

product norm

||x− vr||
2
Ar
= (x− vr)

T ·Ar · (x− vr) (23)

with a positive definite matrix Ar = [ar
h,l] ∈ ℜM×M

is continuously differentiable wrt. x for m∈(1;3).

The proof is recorded in the appendix.

Remark 1: As both FCM and GK algorithm use MF

(22), the result holds for both.

Remark 2: Similarly it can be shown that MF (22)

that use a Lp-norm are continuously differentiable

wrt. x for m∈(1;3).

Remark 3: Analogously, it can be shown that µi is

continuously differentiable wrt. all vr and to m for

m∈(1;3). This also holds if a Lp-norm is used.

A similar result can be derived for MF that are

used by possibilistic fuzzy cluster algorithms:

Theorem 2: The function

µi(x) =
1

1+
(

η−1
i ||x− vi||

2
Ai

)
1

m−1

(24)

with xk,vi ∈ ℜM,η,m ∈ ℜ+with an inner product

norm

||x− vi||
2
Ai
= (x− vi)

T Ai · (x− vi) (25)

with a positive definite matrix Ai = [ai
h,l ] ∈ ℜM×M

is continuously differentiable wrt. x for m∈(1;3).

The proof is recorded in the appendix.

Remark 1: As the possibilistic c-means (PCM)

and the possibilistic Gustafson-Kessel (PGK) algo-

rithm use both membership functions of type (24)

[51], the result is applicable to both algorithms.

Remark 2: Similarly it can be shown that µi us-

ing a Lp-norm are continuously differentiable wrt.

x for m∈(1;3).

Remark 3: Analogously it can be shown that µi

is continuously differentiable wrt. all vr,m and ηi

for m∈(1;3).

The example in Figure 1 illustrates the geomet-

rical interpretation of these results: The graph of

µ1(x1) is smooth for m ∈ (1;3) and has a flat cen-

tral region around the MF center. As shown in the

proof, for m=3 the derivate is discontinuous but fi-

nite in the centers. In the function graph, this pro-

vides for a peak with finite opening angle at the

centers. For m>3, the derivative has a pole in the

centers, providing for a sharp peak in the function

graph at the centers.

5.5 TS Modeling Specific Requirements

The proposed clustering-based TS fuzzy model

identification strategy requires choosing m in three

places: clustering, weighting during local model

parameter estimation and model evaluation. All can
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be chosen individually. The location of the proto-

types determined by FCM and GK clustering little

depend on the value of m (if the clusters have sim-

ilar geometry and density) [20]. The shape of the

MFs and therefore the weighting of individual train-

ing data significantly depend on m, see Figure 1.

If global estimation (GE) is used, a consistent sit-

uation during identification and evaluation is im-

portant, as GE also considers the interpolation re-

gions and fits the model tighter to the data. It is

recommended to use the same value of m during es-

timation and evaluation. A value next to 1 is ad-

visable, if the system is approximately piecewise

affine and the model partitioning well reproduces

the true partitioning. In case of smooth nonlineari-

ties, the approximation quality benefits from giving

the estimator more effective degrees of freedom. A

choice of 1 < m < 1.5 typically provides for good

results. GE can create models that cannot be inter-

preted as local linearization anymore. If the latter

is required, choosing m close to 1 limits the pos-

sible extend (for m → 1 GE converts to LE). The

issues of reactivation and unintuitive interpolation

in TS models have been addressed in the sections 1

and 5.1. Their severity is reduced by a small choice

of m. However, GE considers these effects, which

limits their impact on the approximation error.

A local estimator (LE) conceptually ignores the in-

terpolation between the local models during identi-

fication. Therefore, a small value of 1 < m < 1.3

reduces negative effects of data in the interpola-

tion region on the estimation. As in contrast to

GE, the situations during identification and eval-

uation differ anyway, for model evaluation m can

possibly be chosen slightly larger than for estima-

tion to “soften” the interpolation region. A small

value of m is key for the local interpretability, mean-

ing firstly membership function with distinct cen-

tral areas and secondly local models that can be in-

terpreted as local linearization of the true system.

Reactivation and unintuitive interpolation effect are

not “managed” by LE, which requires an m close to

1 to restrict their severity.

Good results are obtained with product space clus-

tering, as it uses more information on the system

characteristics than input space clustering. How-

ever, MFs defined on the product space have to be

projected to the input space for model evaluation,

which causes changes in assigned memberships of

the data during estimation and evaluation. There-

fore, particularly for GE the best strategy will be

case-dependent. It is remarked that in case of dy-

namic system modeling, the system output is de-

layed and fed back as input such that the input space

includes information on the output.

The undesired reactivation effect can also be ad-

dressed by changing the clustering algorithm: A

noise cluster can be added, to which data far away

from the other clusters are assigned [49]. Also, the

objective function of the clustering algorithm can be

changed [42], [47]. As reactivation does not occur

for MFs with finite support, MF (5) can be projected

and approximated accordingly (e.g. by trapezoids).

The drawback is the resulting approximation error.

Finally it is remarked that partitions and local mod-

els can also directly be derived from the result of

GK-product-space- clustering [11].

5.6 Summary

The majority of the methods developed to adjust m

addresses grouping or general classification prob-

lems. This paper addresses fuzzy-partitioning ap-

plications for TS models imposing altered require-

ments. It is assumed that membership functions (5)

are used straight in the TS model or projected and

approximated.

With respect to properties of the fuzzy partition, it

was proven (independent from the application) that

a desirable flat central area around the partition cen-

ters results for 1 < m < 3 and gets lost for larger m.

This represents a hard upper bound. Secondly, on

example it was shown that for about m> 1.5 (which

is a soft upper bound) several “side effects” due to

the design of function (5) become significant: Re-

activation increases. Adding centers around given

ones changes the memberships in the “enclosed

area”. This statement is supported by several para-

metric case studies, of which some are presented

in the next section. These results do not depend

on the method used to obtain the partitioning. As

m = 1.5 already causes noticeably extended inter-

polation regimes, a strong demand on interpretabil-

ity requires a choice closer to 1.

With respect to the performance of the identifica-

tion strategy, having distinct memberships avoids

impairing local estimations by peripheral data that

does not “belong” to the local model. Experience
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shows that m < 1.3 in case of local and m < 1.5in

case of global estimation will typically provide for

good results. Continuously differentiable member-

ship functions for 1<m< 3simplify the application

of derivate-based optimization. This is useful to es-

timate NOE models or to optimize the partitioning

regarding approximation quality.

6 Numerical Examples

6.1 Smooth Nonlinear Function Approxi-

mation

The approximation of several basic generic non-

linear functions (step, saturation, sigmoid, trigono-

metric, semicircle. . . ) by TS models was studied

regarding the optimal choice of m. As example,

the results for a semi-circle as smooth nonlinearity

are presented. For this purpose, training data sets

were generated by evaluating y =
√

1− x2 for N =
81equidistant arguments in the interval x ∈ [−1;1].
Studies were made with noiseless and noisy data.

As they provided for similar results only the results

for ideal data are presented in the following.

The FCM was applied with Euclidean distance

norm. For LE, memberships defined in the prod-

uct space were used as weights. In case of GE,

memberships were defined in the input space. Dif-

ferent choices of m for clustering and identifica-

tion on the one hand as well as for model evalu-

ation on the other hand were examined. Figure 3

shows the mean squared prediction error EMSE =
N−1 ·∑N

k=1(yk− ŷk)
2 in a qualitative manner by visu-

alizing it as a matrix of grey scale values. The value

of m was varied in increments of 0.1 within the in-

terval [1.1; 3]. The choice of m during clustering is

not varied independently as it hardly affects the re-

sulting position of the prototypes; m is changed in

the membership functions used for weighting in the

parametric studies. The columns record top-down

the results for simultaneously increasing the value

of m in clustering and estimation. The rows note

the results for, from left to right, increasing value

of m in model evaluation. Hence, the top left cell

stands for the crispiest configuration.

Figure 3. TS model performance (EMSE) for

approximating a semi-circle function: top (bottom)

row shows results for LE (GE). Columns refer to m

used for clustering and modelling, rows refer to m

used for model evaluation. m was varied in

increments of 0.1 between 1.1 and 3.0 with the top

left cell corresponding to the lowest values. Light

(dark) colour indicates a low (high) EMSE. The

range of encountered EMSE numbers is recorded

below each matrix.

Using LE with m=1.3 provides optimal results

for model building (except for c=2, which favors

m=1.1). Regarding model evaluation, m ∈ [1.1;1.4]
provides optimal results. A small value of m re-

stricts the range of data effectively used by an

LE and therefore avoids that peripheral data (from

the local model’s perspective) impairs the results.

GE considers the interpolation effects and a larger

fuzziness increases the effective degrees of free-

dom for the estimator. This explains that for model

building m should be chosen higher than for LE,

e.g. m ∈ [1.1;1.4]. A design for consistency during

training and evaluation is preferred, which is indi-

cated by the good results on the main diagonal in

the figure. This means it is recommended to use the

same m for estimation and evaluation. A compari-

son of EMSE value for LE (top) and GE (bottom) in

Figure 3 shows that the best achieved performance

is similar for LE and GE. However, LE yields good

models only for choosing m in a narrow range. GE

provides for good modeling for a wider range of m.

6.2 Discontinuous Piecewise Affine Func-

tion Approximation

This subsection studies identifying a piece-wise

affine (PWA) model for a PWA system, as this

permits to compare estimated and true parame-

ter sets. Moreover, it is an example of a dis-

continuous original system. Consider a system

that is composed of c=3 truly affine local models
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yi(x1;x2) = [x1;x2;1] · [a1,i;a2,i;a0,i]
T

=: [xT ;1]Θi

given as

y1 =−4x1 +4x2−2 =: [x1;x2;1] ·Θ1

y2 = 4x1−2x2−4 =: [x1;x2;1] ·Θ2

y3 = 2x1 + x2 +1 =: [x1;x2;1] ·Θ3

. (26)

Let the bounds of local models be defined by as-

signing a center to each model

v1 = [0.5;0.5]T ;v2 = [0.5;1.5]T ;

v3 = [1.5;1]T
(27)

and by carrying out a Dirichlet decomposition of

the data space for these centers using the Euclidean

norm. This defines the true system, which is to be

approximated by a TS model.

An input data set X of N=90 observations is con-

structed as follows: Around each vi (27) 30 normal

distributed points xkare generated using a uniform

variance of σ2=0.25. The points are assigned to the

local model, in which partition it is located. Eqs.

(26) are used to compute the yk for all xk. Figure 5

(semitransparent) shows the graph of the “true” sys-

tem. To obtain training data with simulated noise, a

mean-free normal distributed random number with

variance of 0.25 (N(0;0.25)) is added to each yk.

The FCM is applied with c=3 and Euclidean. m is

incremented by 0.01 in [1.1;1.5] and 0.1 in [1.5;10].
The FCM is terminated if ∆µi,k|max < 10−8or if 100

iterations are completed. Five random initializa-

tions are tested for each choice of m, but the ini-

tial value dependence was negligible. Clustering

in the input space provided for prototypes close to

the true centers vi, so did product space clustering.

The parameter vectors are estimated using LE with

the MF resulting from clustering as weights. Fig-

ure 4 shows JFCM , EMSE , the maximum absolute

error Emax = maxk |yk− ŷk|and the Euclidean norm

of the deviation of LE-estimated and true param-

eters (22) ‖∆Θ‖ := ∑q,i

√

(Θ̂q,i−Θq,i)2 dependent

on m. For high model quality, m should be small.

On the contrary, JFCM declines with rising m. This

results from ∂J/∂m < 0∀m > 1, see (11), and is

application-independent. The original function is

well approximated for m=1.1: Figure 5 compares

the graphs of true and identified models. Figure 6

shows the estimated TS model that considers the in-

terpolation between the local models due to the soft

MF in contrast to the hard switching original sys-

tem. It illustrates that TS models with m close to 1

can be used to approximate discontinuous systems.

Figure 4. Performance criteria dependent on m

determined on training data

6.3 Vehicle Engine Characteristic Curve

The identification of characteristic curves of a

3l-FSI-Audi-gasoline engine from data recorded at

a test stand (Figure 7) provides for a smooth non-

linear regression problem. Air mass flow y, man-

ifold pressure (x1), speed (x2) and throttle open-

ing (x3) were measured. Plotting y against x1 and

x2or x2 and x3, respectively, exhibits a locally ap-

proximately plan distribution of the measurements.

Plotting y against x1and x3, however, reveals a “he-

lix type” characteristic, which is difficult to capture

with parsimonious, local affine TS models. The

available N=689 measurement data were normal-

ized to the unit interval and then randomly divided

into equally sized training and a test data set. Dif-

ferent identification methods and model candidates

were examined. Clustering with the GK algorithm

provided for one magnitude smaller value of JFCM

than using FCM with Euclidean, but the prediction

quality is about the same. On the contrary, the pa-

rameter count of a GK-based model nearly doubles

for the same c. Using the FCM with Mahalanobis

norm yielded significantly worse results than for the

Euclidean wrt. both clustering and prediction qual-

ity related criteria. Assessing the model alternatives

with information criteria such as the Bayesian in-

formation criterion, BIC [6], promotes using FCM

and Euclidean. The results for this choice will be

presented in more detail.
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Figure 5. True (noiseless) PWA system

(semitransparent) and graphs of local models

identified by LE for m=1.1 using noisy data (full

colour)

Figure 6. Transfer characteristic of identified TS

model for PWA model

Figure 7. Engine test stand used to record the data.

A 2-step-clustering procedure is used where the re-

sult from the first clustering with larger fuzziness

(m=3) initializes a 2nd clustering with smaller fuzzi-

ness. The identification procedure was repeated 30

times with random initialization for each choice of

design parameters to avoid inappropriate local con-

vergence of the FCM. The result with minimum

JFCM was chosen. This procedure was experienced

to be moderately less prone to inappropriate local

convergence. The m-values in Figure 8 refer to the

choice for the second clustering step. This value

is used also during parameter estimation and model

evaluation. The scores for EMSE and Emax in Fig-

ure 8 indicate 1.1?m?1.5 as a suitable range. Given

the nature of the problem, there is no “true” number

of clusters. The choice depends on the required ap-

proximation quality. Figure 9 compares measure-

ment data and prediction of a TS model with c=9

and m=1.1 on test data. This model was the best

of the tested FCM models, see also Figure 8. Evi-

dently the TS model can well approximate the helix

structure.

Figure 8. Engine model performance dependent

on fuzziness m and number of clusters c evaluated

for training data.

6.4 Compressor Characteristic Curve

The identification of a characteristic curve of an

axial compressor (NASA CR-72694) provides for

a heterogeneous nonlinear regression problem: As

the original data in Figure 10 show, both smooth

nonlinearities showing locally varying curvature

and crisp behavioral changes appear. Moreover, the

crisp change does not follow a straight line. The

objective is to determine a parametric model for

the mass flow (y) dependent on isentropic efficiency

(x1) and pressure ratio (x2). The mean was removed

from the data and the result divided by the maxi-

mum deviation from the mean. 500 of the
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Figure 9. Air mass flow y dependent on manifold

pressure (x1) and throttle opening (x3):

measurements and prediction of engine model with

c = 9, m = 1.1 (normalized data).

Figure 10. Reference compressor curve (original

data).

available 56248 data sets were randomly chosen for

identification, another 500 randomly for model val-

idation. Partitioning was done in the product space

using the FCM with Euclidean. Clustering and pa-

rameter identification were repeated 20 times for

all parameterizations of c and m in order to avoid

inappropriate local convergence of the FCM. Pa-

rameters were determined using LE with product

space membership functions. For GE the MFs were

projected to the input space. Varying m in incre-

ments of 0.01 and c indicates m=1.2 and c=6 to

be a suitable choice (Figure 11). Investigating the

shape of the resulting (soft) partition boundaries re-

vealed that the course of the crisp change in the

original behavior is not well reproduced yet. There-

fore the identification algorithm was augmented by

an a-posteriori numerical optimization step that ad-

justed all viand m in order to minimize JMSE . Figure

12 shows the resulting model. The optimization re-

duced the identification error by a factor of 4 and

the validation error by about a third. The reason

for this improvement is that the optimization moved

the vi such that the resulting partitioning well repro-

duced the bended contour of the “step change” of

the graph. The optimized fuzziness was m=1.06. A

comparison with the piecewise affine model in [50]

favors the presented approach due to a smaller over-

all prediction error and less local models. Further

details are provided in [48].

Figure 11. EMSE on test data for different choices

of m and c in the compressor study (normalized

data).

Figure 12. TS model with 6 local models (dotted

planes), corresponding partition centres (circles)

and overall output (mesh) (normalized data).

7 Conclusions

Fuzzy clustering has successfully been deployed

in many areas including TS model identification.

A key design parameter is the weighting expo-

nent/fuzziness parameter m. Different recommen-

dations were given on the choice with m=2 often be-

ing the default for grouping and partitioning appli-

cations. This contribution proposed guidelines for

choosing m for clustering-based TS model identi-

fication, where the membership functions resulting

from clustering are used as is for the TS model or

projected and approximated before.

Bounding m∈(1;3) is proposed from analyzing

differentiability and grouping concept of the classi-

fier function. It was shown that additional, model-

specific requirements on choosing m have to be
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adhered to derive models of good quality. This

provided for tighter bounds: Optimal application-

specific value of m can typically be found within

the interval (1; 1.3] for local and (1; 1.5] for global

estimation – where the upper bound is meant to be

fuzzy. The guidelines were demonstrated in four

case studies, which also have shown the significant

effect of m on the quality of the identified TS model.

As the optimal choice of m depends on the applica-

tion, the common choice of m=2 could be optimal.

However, it has not been a good choice in any of the

case studies carried out by the author. Therefore, it

is advised to carefully consider the choice of m for

a given problem.

Appendix

Proof of theorem 1: Given arguments x =
[x1; ...;x f ; ...;xM]T ∈ ℜM , prototypes vr =
[vr,1; ...;vr,M] ∈ ℜM ,r ∈ {1;2; ...;c}, and an inner

product norm

d2
r := ||x− vr||

2
Ar
= (x− vr)

T Ar · (x− vr) (28)

with form matrix Ar = [ar
h,l ] ∈ ℜM×M , the partial

derivative ∂µi/∂x f is obtained as:

∂µi

∂x f

=

−1
m−1 ∑

c

j = 1

j 6= i

(

d2
i

d2
j

) 2−m
m−1

(

∂d2
i

∂x f

)

d2
j−d2

i

(

∂d2
j

∂x f

)

d4
j









1+∑
c

j = 1

j 6= i

(

d2
i

d2
j

) 1
m−1









2

(29)

with

∂d2
r

∂x f

=
M

∑
l=1

(ar
f ,l +ar

l, f )(xl− vr,l). (30)

Potential points of discontinuity are the cluster cen-

ters vr and the further analysis can be restricted

to those. Hence, it remains to show that the par-

tial derivatives of µi to all x f are continuous in all

vr. It will be analyzed for what m left- and right-

hand limit of ∂µi/∂x f are identical if x f approaches

vrfrom above or below. As µi takes a strict maxi-

mum of 1 in vi and a strict minimum of 0 in any

v j, j 6= i, this is only the case if ∂µi/∂x f → 0 for

left- or right-hand approaching a prototype. Theo-

retically, m < 1 is possible, but would not provide

for meaningful membership functions.

Approaching vi: Within a sufficient small neigh-

borhood vi is approached in direction of x f . Then

d j > 0∀ j 6= i and d2
i
= (x f − vi, f )

2ai
f , f . Inserting

the latter into eq. (29) provides for

∂µi

∂x f
=

−1
m−1















1+∑
c

j = 1

j 6= i

(

(x f−vi, f )
2ai

f , f

d2
j

) 1
m−1















2 ·

·∑c

j = 1

j 6= i

(

(x f−vi, f )
2ai

f , f

d2
j

) 2−m
m−1

· 1
d4

j

·

·
(

2(x f − vi, f )a
i
f , f d

2
j− (x f − vi, f )

2)
)

·

·ai
f , f ∑

M
l=1(a

j

f ,l +a
j

l, f )(xl− v j,l)

(31)

After collecting the (x f − vi, f )-terms it can be con-

cluded that ∂µi/∂x f → 0 if (x f − vi, f )
3−m
m−1 → 0 and

(x f − vi, f )
2

m−1 → 0 for x f → vi, f . This is the case

if m ∈ (1;3). Eq. (31) also shows that different

non-zero finite left- and right-hand limits result for

m = 3. A pole results in vi for m≤ 1 or m > 3.

Approaching v j; j 6= i: Within a sufficient

small neighborhood, vh ∈ {v1,v2, ...,vc}\vi
1 is ap-

proached in direction of x f . Rearranging eq. (29)

provides for:

∂µi

∂x f
=

−1
m−1(d2

h)
2

m−1 (d2
i )

2−m
m−1















(d2
h)

1
m−1 +(d2

i )
1

m−1 +∑
c

j = 1

j 6= i,h

(

d2
i

d2
j

d2
h

) 1
m−1















2 ·

·∑c

j = 1

j 6= i

(

1
d2

j

) m
m−1 ((

∑
M
l=1(a

i
f ,l +ai

l, f )(xl− vi,l)
)

d2
j −

−d2
i

(

∑
M
l=1(a

j

f ,l +a
j

l, f )(xl− v j,l)
))

(32)

Then di > 0,d j > 0∀ j 6= iand d2
h = (x f −

vh, f )
2ah

f , f . Inserting the latter into eq. (32) and

collecting the critical terms (x f − vh, f ) provides for

(x f −vh, f )
2

m−1 and (x f −vh, f )
3−m
m−1 . These terms have

to approach 0 for x f → vh, f , which is the case for

m ∈ (1;3).

1Subindex h isintroduced f orthecentero f interest,asthereare c −1centers v j in(29).
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Proof of theorem 2: Given arguments x =
[x1; ...;x f ; ...;xM]T ∈ ℜM, prototypes vi =
[vi,1; ...;vi,M] ∈ ℜM ,i ∈ {1;2; ...;c}, and an inner

product norm

di := ||x− vi||
2
Ai
= (x− vi)

T Ai · (x− vi) (33)

with form matrices Ar = [ar
h,l] ∈ ℜM×M, the partial

derivative ∂µi/∂x f is obtained as:

∂µi

∂x f

=

−1
m−1

(

1
ηi

)
1

m−1 (

d2
i

)
2−m
m−1

(

1+
(

d2
i

ηi

)
1

m−1

)2
·

∂d2
i

∂x f

(34)

Inserting d2
i
= (x f − vi, f )

2ai
f , f in eq. (34) shows

that ∂µi/∂x f → 0 if (x f −vi, f )
3−m
m−1 → 0for x f → vi, f .

This is the case if m ∈ (1;3). Eq. (32) also shows

that different non-zero but finite left- and right-hand

limits result for m= 3. A pole results in vi for m≤ 1

or m > 3.
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