Identyfikatory
Warianty tytułu
Konferencja
International Symposium on HYDROACOUSTICS AND ULTRASONICS EAA Symposium (formerly 13th FASE Symposium) Gdańsk-Jurata, 12-16 May 1997
Języki publikacji
Abstrakty
The beam equation for a sound beam in a diffusive medium, called the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers' equation. A free parameter in this generalized Burgers' equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude and the sound velocity in the fluid.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--78
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Department of Mechanics, Kungl. Tekniska Högskolan (Royal Institute of Technology) 100 44 Stockholm, Sweden
Bibliografia
- 1. Zabolotskaya, E.A. and Khokhlov, R.V., (1969), "Quasiplane waves in the nonlinear acoustics of confined beams", Sov.-Phys.- Acoust. 15, 35-40.
- 2. Kuznetsov, V.P., "Equations of nonlinear acoustics" ,(1971), Sov.-Phys.-Acoust. 16, 467-470.
- 3. Sionoid, P.N., (1993), "The generalized Burgers' and Zabolotskaya-Khokhlov equations: transformations, exact solutions and qualitative properties", 13th ISNA, Bergen, Norway. 63-67.
- 4. Crighton, D.G. and Scott, J.F., (1979), "Asymptotic solutions of model equations in nonlinear acoustics", Phil. Trans. R. Soc. Lond. A292, 101-134.
- 5. Ystad, B. and Berntsen, J., "Numerical solution of the KZK equation for focusing sources", Acta Acustica 3, 323-350 (1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfdcea5b-e172-4b40-879c-7b15ad111dd2