PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of autonomous rock electromagnetic radiation measurement instrumentation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyzes the operation of innovative composite measurement instrumentation for spontaneous electromagnetic emission. The designed receiver measures and records both components of the EM field emitted by rocks subjected to increased mechanical stress. The range of signals transmitted by the receiver system and its dynamics were determined. A receiver was used to observe electromagnetic signals generated during a hard coal sample crushing in laboratory conditions. Test results confirmed the high dynamic range of the system at 98 dB and the ability to observe signals over a range of frequencies up to 50 kHz. The experimental results confirm the signal bandwidth characteristic of coal mine EM field emission obtained in earlier studies. The constructed autonomous receiver can be used in mine workings as a complementary warning system for emerging mine hazards.
Rocznik
Strony
art. no. e138567
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
  • [1] M. Akgun, “Coal mine accidents,” Turk Thorac Journal, vol. 16, no. 1, pp. s1–s2, 2015, doi: 10.5152/ttd.2015.008.
  • [2] A. Tubis, S. Werbińska-Wojciechowska, and A. Wróblewski, “Risk assessment methods in mining industry – A systematic review,” Appl. Sci., vol. 10, pp.1‒34, 2020, doi: 10.3390/ app10155172.
  • [3] J.L.X. Meng, Y. Wang, and Z. Yang, “Prediction of coal seam details and mining safety using multicomponent seismic data: A case history from China,” Geophysics, vol. 81, no. 5 (September – October), pp. 149–165, 2016, doi: 10.1190/GEO2016-0009.1.
  • [4] Y. Wang, N. Fu, X. Lu, and Z. Fu, “Application of a new geophone and geometry in tunnel seismic detection,” Sensors, vol. 19, p. 1246, 2019, doi: 10.3390/s19051246.
  • [5] R.M. Bhattacharjeeb, A.K. Dasha, and P.S. Paulb, “A root cause failure analysis of coal dust explosion disaster – Gaps and lessons learnt” Eng. Fail. Anal., vol. 111, pp. 1‒17, 2020, doi: 10.1016/j.engfailanal.2019.104229.
  • [6] M. Li et al., “Piezoelectric effect and ignition properties of coal mine roof sandstone deformation and fracture,” Fuel, vol. 290, pp. 1‒9, 2021, doi: 10.1016/j.fuel.2020.120007.
  • [7] M. Hayakawa, “Earthquake precursor studies in Japan” in Pre‐Earthquake Processes, Wiley, pp.7‒18, 2018, doi: 10.1002/ 9781119156949.ch2.
  • [8] B. Kunar, “Risk assessment for disaster management in underground coal mines,” Indian Miner. Ind. J., vol. 11, pp. 113‒119, 2015.
  • [9] G.-J. Liu, C.-P. Lu, H.-Y. Wang, P.-F. Liu, and Y. Liu, “Warning method of coal bursting failure danger by electromagnetic radiation,” Shock Vib., vol. 2015, p. 583862, 2015, doi: 10.1155/2015/ 583862.
  • [10] E. Wang, H. Jia, D. Song, N. Li, and W. Qian, “Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines,” Int. J. Rock Mech. Min. Sci., vol. 70, pp. 16–25, 2014, doi: 10.1016/j.ijrmms.2014.02.004.
  • [11] A.A. Panfilov, “The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action,” Nat. Hazards Earth Syst. Sci. Discuss., vol. 1, pp. 7821–7842, 2013, doi: 10.5194/nhessd-1-7821-2013.
  • [12] Z. Shijiea, S. Xiaoyuanc, L. Chengwub, X. Xiaoxuan, and X. Zhuang, “The analysis of coal or rock electromagnetic radiation (EMR) signals based on Hilbert-Huang transform (HHT),” First International Symposium on Mine Safety Science and Engineering, Procedia Engineering, vol. 26, pp. 689‒698, 2011.
  • [13] R. Mydlikowski and K. Maniak, “Measurement of electromag¬netic field component emission as a precursor of emerging haz¬ard in coal mines,” J. Telecomm. Inf.Technol., vol. 4, pp. 30‒35, 2019, doi: 10.26636/jtit.2020.145320.
  • [14] A. Prałat, K. Maniak, and I. Pompura, “Electromagnetic phe¬nomena in landslides,” Acta Geodynamica and Geomaterialia, vol. 2, no. 3, pp. 131‒138, 2005.
  • [15] V. Frid, “Calculation of electromagnetic radiation criterion of rockburst hazard forecast in coal mines,” Pure Appl. Geophys., vol. 158, pp. 931‒944, 2001, doi: 10.1007/PL00001214.
  • [16] V. Frid and K. Vozoff, “Electromagnetic radiation induced by mining rock failure,” Int. J. Coal Geol., vol. 64, pp. 57‒65, 2005, doi: 10.1016/j.coal.2005.03.005.
  • [17] D. Lin-ming, L. Cai-ping, M. Zong-long, and G. Ming-shi, “Pre¬vention and forecasting of rock burst hazards in coal mines,” Min. Sci. Technol., vol. 19, pp. 585–591, 2009, doi: 10.1016/ S1674-5264(09)60109-5.
  • [18] S.G. O’Keefe and D.Thiel, “Electromagnetic emissions during rock blasting,” Geophys. Res. Lett., vol. 18, no. 5, pp. 889‒892, 1991, doi: 10.1029/91GL01076.
  • [19] P. Xiong et al., “Identification of electromagnetic pre-earthquake perturbations from the DEMETER data by machine learning,” Remote Sens., vol. 12, pp. 1‒27, 2020, doi: 10.3390/rs12213643.
  • [20] A. Erturk and D.J. Inman, Piezoelectric Energy Harvesting, First Edition, John Wiley & Sons, Ltd. Published 2011, pp. 343‒344.
  • [21] M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, and A. Vol¬lbrecht, “A critical discussion of the electromagnetic radiation (EMR) method to determine stress orientations within the crust,” Solid Earth, vol. 3, pp. 401‒414, 2012, doi: 10.5194/sed-4-993- 2012.
  • [22] A. Rabinovitch, V. Frid, D. Bahat ,and J. Goldbaum, “Decay mechanism of fracture induced electromagnetic pulses,” J. Appl. Phys., vol. 93, no. 9, pp 5085–5090, 2003, doi: 10.1063/ 1.1562752.
  • [23] A. Rabinovitch, V. Frid, and D. Bahat, “Surface oscillations. A pos¬sible source of fracture induced electromagnetic radiation,” Tec¬tonophysics, vol. 431, pp 15‒21, 2007, doi: 10.1016/j.tecto.2006. 05.027.
  • [24] A. Takeuchi and H. Nagahama, “Electric dipoles perpendicu¬lar to a stick-slip plane,” Phys. Earth Planet. Inter., vol. 155, pp. 208–218, 2006, doi: 10.1016/j.pepi.2005.12.010.
  • [25] P. Koktavy and J. Sikula, “Physical model of electromagnetic emission in solids,” Proc. 26th Eur. Conf. Acous. Emission Test¬ing EWGAE 2004, Berlin, Germany, 2004, pp. 899‒904.
  • [26] S.K. Sharma, R. Kiran, A. Kumar, V.S. Chauhan, and R. Kumar, “A theoretical model for the electromagnetic radiation emission from hydrated cylindrical cement paste under impact,” J. Phys. Commun., vol. 2, no. 3, pp. 1‒12, 2018,
  • [27] D. Miedzińska, T. Niezgoda, E. Małek, and D. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 409‒505, 2013, doi: 10.2478/bpasts-2013-0049.
  • [28] F. Zhao, Y. Li, Z. Ye, Y. Fan, S. Zhang, H. Wang, and Y. Liu, “Re¬search on acoustic emission and electromagnetic emission char¬acteristics of rock fragmentation at different loading rates,” Shock Vib., vol. 2018, p. 4680879, 2018, doi: 10.1155/2018/4680879.
  • [29] Z. Loni, H. Espinosa, and D. Thiel, “Insulated wire fed floating monopole antenna for coastal monitoring,” Radioengineering, vol. 27, no. 1, pp. 127–133, 2018, doi: 10.13164/re.2018.0127.
  • [30] V. Dyo, T. Ajmal, B. Allen, D. Jazani, and I. Ivanov, “Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals,” J. Eng., vol. 2013, no. 12, pp. 89–96, 2013, doi: 10.1049/joe.2013.0126.
  • [31] T. Bolton and M.B. Cohen, “Optimal design of electrically-small loop receiving antenna,” Prog. Electromagn. Res. C, vol. 98, pp. 155–169, 2020, doi: 10.2528/PIERC19090911.
  • [32] U. Tietze, Ch. Schenk, and E. Gamm, Electronic Circuits–Hand¬book for Design and Application, 2nd Edition. Springer, 2011, pp. 787‒841.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfdb6b39-2e9c-422f-a963-2f561ad4e6a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.