PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Additively manufactured patient specific implants: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Medical applications of additive manufacturing have seen a significant growth in recent years due to availability of advanced medical imaging and design software and wide range of materials. The range of additively manufactured medical implants is growing rapidly and surgeons need to keep themselves updated with state-of-the-art of the technology. This article reviews several articles related to medical implants to help surgeons and researchers to stay up-to-date on recent developments in the domain. Additively manufactured medical implants are reviewed in five categories: orthopedic implants, dental implants, cranioplasty implants, scaffold implants for tissue engineering and other medical implants including chest wall reconstructive implants, anti-migration enhanced tracheal stents, and buccopharyngeal stents. The additive manufacturing process and the material for fabrication of each type of implant are highlighted in the study. It has been observed that titanium alloy is a suitable material for cementless arthroplasty. Porosity in the implants supports bone ingrowth, which results in a significant reduction in stress shielding. Additive manufacturing has a very attractive future in medical implant fabrication due to its capability to produce complex and customized implants. The AM provides freedom to researcher to explore the complex design of medical implants for better bone regeneration and improved osseointegration.
Rocznik
Strony
109--138
Opis fizyczny
Bibliogr. 160 poz., tab., rys.
Twórcy
  • Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, India
  • Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, India
  • Department of Mechanical Engineering, Jaypee University of Engineering. and Technology, Guna, India
Bibliografia
  • [1] S.A. Tyagi and M. Manjaiah. Additive manufacturing of titanium-based lattice structures for medical applications – A review. Bioprinting, 30:e00267, 2023. doi: 10.1016/ j.bprint.2023.e00267.
  • [2] C.K. Chua and K.F. Leong. 3D Printing and Additive Manufacturing: Principles and Applications, 5th ed., World Scientific Publishing Co. Pte. Ltd. 2017.
  • [3] M. Salmi. Additive manufacturing processes in medical applications. Materials, 14(1):191-197, 2021. doi: 10.3390/ma14010191.
  • [4] S.M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, 8:36–62, 2015. doi: 10.1016/j.addma.2015.07.001.
  • [5] A. Yadollahi and N. Shamsaei. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. International Journal of Fatigue, 98:14–31, 2017. doi: 10.1016/j.ijfatigue.2017.01.001.
  • [6] K.M. Hong and Y.C. Shin. Prospects of laser welding technology in the automotive industry: A review. Journal of Materials Processing Technology, 245:46–69, 2017. doi: 10.1016/j.jmatprotec.2017.02.008.
  • [7] Y.K. Modi and S. Sanadhya. Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:503, 2018. doi: 10.1007/s40430-018-1425-9.
  • [8] Y.K. Modi. Calcium sulphate based 3D printed tooling for vacuum forming of medical devices: An experimental evaluation. Materials Technology, 33(10):642–650, 2018. doi: 10.1080/10667857.2018.1491933.
  • [9] S. Singh and S. Ramakrishna. Biomedical applications of additive manufacturing: Present and future. Current Opinion in Biomedical Engineering, 2:105–115, 2017. doi: 10.1016/j.cobme.2017.05.006.
  • [10] O.L.A. Harrysson and D.R. Cormier. Direct fabrication of custom orthopedic implants using electron beam melting technology. In: I. Gibson (Ed.) Advanced Manufacturing Technology for Medical Applications. John Wiley & Sons, 2005. doi: 10.1002/0470033983.ch9.
  • [11] K.M. Abate, A.Nazir, and J.Y. Jeng. Design, optimization, and selective laser melting of vintiles cellular structure-based hip implant. The International Journal of Advanced Manufacturing Technology,112:2037–2050, 2021. doi: 10.1007/s00170-020-06323-5.
  • [12] S.P. Narra, P.N. Mittwede, S.D. Wolf, and K.L. Urish. Additive manufacturing in total joint arthroplasty. Orthopedic Clinics of North America, 50(1):13–20, 2019. doi: 10.1016/j.ocl.2018.08.009.
  • [13] S. Arabnejad, B. Johnston, M. Tanzer, and D. Pasini. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopedic Research, 35(8):1774–1783, 2017. doi: 10.1002/jor.23445.
  • [14] M. Cronskär, M. Bäckström, and L.E. Rännar. Production of customized hip stem prostheses – a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyping Journal, 19(5):365–372, 2017. doi: 10.1108/RPJ-07-2011-0067.
  • [15] A. Senkoylu, I. Daldal, and M. Cetinkaya. 3D printing and spine surgery. Journal of Or- thopaedic Surgery, 28(2):1–10, 2020. doi: 10.1177/2309499020927081.
  • [16] M. Tilton, G.S. Lewis, H.B. Wee, A. Armstrong, M.W. Hast, and G. Manogharan. Additive manufacturing of fracture fixation implants: Design, material characterization, biomechanical modeling and experimentation. Additive Manufacturing, 33:101137, 2020. doi: 10.1016/j.addma.2020.101137.
  • [17] N. de Beer and A. van der Merwe. Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyping Journal, 19(2):126–139, 2013. doi: 10.1108/13552541311302987.
  • [18] S. Shuib, M.A. Azemi, I. Mohd Arrif, and N.S. Hamizan. Design for additive manufacturing and finite element analysis for high flexion total knee replacement (TKR). Journal of Mechanical Engineering, 8(2):97–110, 2021. https://ir.uitm.edu.my/id/eprint/47679.
  • [19] M. Jain, S. Dhande, and N. Vyas. Biomodeling of club foot deformity of babies. Rapid Prototyping Journal, 15(3):164–170, 2009. doi: 10.1108/13552540910960253.
  • [20] A.M. Ramos and J.A. Simoes. CAD-CAM-RTV – lost-wax casting technology for medical implants. Rapid Prototyping Journal, 15(3):211–215, 2009. doi: 10.1108/13552540910960316.
  • [21] O.L.A Harrysson, D.R. Cormier, D.J. Marcellin-Little, and K. Jajal. Rapid prototyping for treatment of canine limb deformities. Rapid Prototyping Journal, 9(1):37–42, 2003. doi: 10.1108/13552540310455647.
  • [22] M.B. Bezuidenhout, D.M. Dimitrov, A.D. Van Staden, G.A. Oosthuizen, and L.M. Dicks. Titanium-based hip stems with drug delivery functionality through additive manufacturing. BioMed Research International, 2015:134093, 2015. doi: 10.1155/2015/134093.
  • [23] R. Boorla and T. Prabeena. Fabrication of patient specific knee implant by fused deposition modelling. Materials Today: Proceedings, 18(7):3638–3642, 2019. doi: 10.1016/j.matpr.2019.07.296.
  • [24] T.W.B. Kim, O.J. Lopez, J.P Sharkey, K.R. Marden, M.R. Murshed, and S.I. Ranganathan. 3D printed liner for treatment of periprosthetic joint infections. Medical Hypotheses, 102:65–68, 2017. doi: 10.1016/j.mehy.2017.03.014.
  • [25] M. Javaid and A. Haleem. Additive manufacturing applications in orthopaedics: A review. Journal of Clinical Orthopaedics and Trauma, 9(3):202–206, 2018. doi: 10.1016/j.jcot.2018.04.008.
  • [26] M. Vaezi and S. Yang. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual and Physical Prototyping, 10(3):123–135, 2015. doi: 10.1080/ 17452759.2015.1097053.
  • [27] P. Bartolo, J.P. Kruth, J. Silva, G. Levy, A. Malshe, K. Rajurkar, M. Mitsuishi, J. Ciurana, and M. Leu. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals, 61(2):635–655, 2012. doi: 10.1016/j.cirp.2012.05.005.
  • [28] S.M. Kurtz. PEEK Biomaterials Handbook. Oxford: William Andrew, 2011.
  • [29] S. Singh, C. Prakash, and S. Ramakrishna. 3D printing of polyether-ether-ketone for biomedical applications. European Polymer Journal, 114:234–248, 2019. doi: 10.1016/j.eurpolymj.2019.02.035.
  • [30] V. Karageorgiou and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27):5474–5491, 2005. doi: 10.1016/j.biomaterials.2005.02.002.
  • [31] E. García-Gareta, M.J. Coathup, and G.W. Blunn. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 81:112–121, 2015. doi: 10.1016/j.bone.2015.07.007.
  • [32] M. Revilla-León, M.J. Meyer, and M. Özcan. Metal additive manufacturing technologies: literature review of current status and prosthodontic applications. International Journal of Computerized Dentistry, 22(1):55–67, 2019.
  • [33] A. Ataee, Y. Li, and C. Wen. A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP-Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomaterialia, 97:587–596, 2019. doi: 10.1016/j.actbio.2019.08.008.
  • [34] B. Zhao, H. Wang, N. Qiao, C. Wang, and M. Hu. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Materials Science and Engineering: C, 70(1):832–841, 2017. doi:10.1016/j.msec.2016.07.045.
  • [35] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, and M. Hu. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS One, 11(7):e0158513, 2016. doi: 10.1371/journal.pone.0158513.
  • [36] L. Li, J. Shi, K. Zhang, L. Yang, F. Yu, L. Zhu, H. Liang, X. Wang, and Q. Jiang. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. Journal of Orthopaedic Translation, 19:94–105, 2019. doi: 10.1016/j.jot.2019.03.003.
  • [37] V.V. Popov, G. Muller-Kamskii, A. Kovalevsky, G. Dzhenzhera, E. Strokin, A. Kolomiets, and J. Ramon. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical Engineering Letters, 8:337–344, 2018. doi: 10.1007/s13534-018- 0080-5.
  • [38] H. Wang, K. Su, L. Su, P. Liang, P. Ji, and C. Wang. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Materials Science and Engineering: C, 104:109908, 2019. doi: 10.1016/j.msec.2019.109908.
  • [39] C.N. Kelly, N.T. Evans, C.W. Irvin, S.C. Chapman, K. Gall, and D.L. Safranski. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science and Engineering: C, 98:726–736, 2019. doi: 10.1016/j.msec.2019.01.024.
  • [40] W.F. Yang, W.S. Choi, Y.Y. Leung, J.P. Curtin, R. Du, C.Y. Zhang, X.S. Chen, and Y.X. Su. Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: A prospective pilot study. Oral Oncol, 78:31–36, 2018. doi: 10.1016/j.oraloncology. 2018.01.005.
  • [41] A. Campbell. Bioceramics for implant coatings. Materials Today, 6(11):26–30, 2003. doi: 10.1016/S1369-7021(03)01128-3.
  • [42] M. Tilton, G.S. Lewis, and G.P. Manogharan. Additive manufacturing of orthopedic implants. In: B. Li, T. Webster (eds): Orthopedic Biomaterials, pages 21–55, Springer, 2018. doi: 10.1007/978-3-319-89542-0_2.
  • [43] U. Scheithauer, E. Schwarzer, H.J. Richter, and T. Moritz. Thermoplastic 3D printing – An additive manufacturing method for producing dense ceramics. International Journal of Applied Ceramic Technology, 12(1):26–31. 2015. doi: 10.1111/ijac.12306.
  • [44] P. Jindal, M. Juneja, D. Bajaj, F.L. Siena, and P. Breedon. Effects of post-curing conditions on mechanical properties of 3D printed clear dental aligners. Rapid Prototyping Journal, 26(8):1337–1344, 2020. doi: 10.1108/RPJ-04-2019-0118.
  • [45] T.T. Wheeler. Orthodontic clear aligner treatment. Seminars in Orthodontics, 23(1):83–89, 2017. doi: 10.1053/j.sodo.2016.10.009.
  • [46] R. Ramakrishnaiah, A.A. Al-kheraif, A. Mohammad, D.D. Divakar, S.B. Kotha, S.L. Celur, M.I. Hashem, P.K. Vallittu, and I.U. Rehman. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi Journal of Biological Sciences, 24(4):787–796, 2017. doi: 10.1016/j.sjbs.2016.05.001.
  • [47] M. Salmi, K.S. Paloheimo, J. Tuomi, T. Ingman, and A. Mäkitie. A digital process for additive manufacturing of occlusal splints: a clinical pilot study. Journal of the Royal Society Interface, 10(84):20130203, 2013. doi: 10.1098/rsif.2013.0203.
  • [48] W.P. Syam, H.A. Al-Shehri, A.M. Al-Ahmari, K.A. Al-Wazzan, and M.A. Mannan. Pre- liminary fabrication of thin-wall structure of Ti6Al4V for dental restoration by electron beam melting. Rapid Prototyping Journal, 18(3):230–240, 2012. doi: 10.1108/13552541211218180.
  • [49] J. Wu, X. Wang, X. Zhao, C. Zhang, and B. Gao. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping Journal, 18(4):318–323, 2012. doi: 10.1108/13552541211231743.
  • [50] M. Fantini, F. De Crescenzio, L. Ciocca, and F. Persiani. Additive manufacturing to assist prosthetically guided bone regeneration of atrophic maxillary arches. Rapid Prototyping Journal, 21(6):705–715, 2015. doi: 10.1108/RPJ-12-2013-0127.
  • [51] L. Nickels. World’s first patient-specific jaw implant. Metal Powder Report, 67(2):12–14, 2012. doi: 10.1016/S0026-0657(12)70128-5.
  • [52] X. Li, J. Wang, and L.L. Shaw. Optimization of the cross section geometry of laser-densified dental porcelain bodies for rapid prototyping processes. Rapid Prototyping Journal, 11(3):140–152, 2005. doi: 10.1108/13552540510601264.
  • [53] Y.T. Wang, J.H. Yu, L.J. Lo, P.H. Hsu, and C.L. Lin. Developing customized dental minis- crew surgical template from thermoplastic polymer material using image superimposition, CAD system, and 3D printing. BioMed Research International, 2017:1906197, 2017. doi: 10.1155/2017/1906197.
  • [54] R. Brighenti, M.P. Cosma, L. Marsavina, A. Spagnoli, and M. Terzano. Laser-based additively manufactured polymers: a review on processes and mechanical models. Journal of Materials Science, 56:961–998, 2021. doi: 10.1007/s10853-020-05254-6.
  • [55] M. Shahbazi and H. Jäger. Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Applied Bio Materials, 4(1):325–369, 2021. doi: 10.1021/acsabm.0c01379.
  • [56] D. Popescu, A. Zapciu, C. Tarba, and D. Laptoiu, D. Fast production of customized three- dimensional-printed hand splints. Rapid Prototyping Journal, 26(1):134–144, 2020. doi: 10.1108/RPJ-01-2019-0009.
  • [57] T. Patrício, M. Domingos, A. Gloria, U. D’Amora, J.F. Coelho, and P. J. Bártolo. Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal, 20(2):145–156, 2014. doi: 10.1108/RPJ-04-2012-0037.
  • [58] F. Alifui-Segbaya. Biomedical photopolymers in 3D printing. Rapid Prototyping Journal, 26(2):437–444, 2019. doi: 10.1108/RPJ-10-2018-0268.
  • [59] S. Pillai, A. Upadhyay, P. Khayambashi, I. Farooq, H. Sabri, M. Tarar, K.T. Lee, I. Harb, S. Zhou, Y. Wang, and S.D. Tran. Dental 3d-printing: Transferring art from the laboratories to the clinics. Polymers, 13(1):157, 2021. doi: 10.3390/polym13010157.
  • [60] S.S. Gill and M. Kaplas. Comparative study of 3D printing technologies for rapid casting of aluminium alloy. Materials and Manufacturing Processes, 24(12):1405–1411, 2009. doi: 10.1080/10426910902997571.
  • [61] C.J. Oates, W.S. Kendall, and L. Fleming. A statistical approach to surface metrology for 3D-printed stainless steel. Technometrics, 64(3):370–383, 2022. doi: 10.1080/00401706. 2021.2009034.
  • [62] M. Montani, A.G. Demir, E. Mostaed, M. Vedani, and B. Previtali. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing. Rapid Prototyping Journal, 23(3):514–523, 2017. doi: 10.1108/RPJ-08-2015-0100.
  • [63] R. Bibb, D. Eggbeer, P. Evans, A. Bocca, and A. Sugar. Rapid manufacture of custom-fitting surgical guides. Rapid Prototyping Journal, 15(5):346–354, 2009. doi: 10.1108/13552540910993879.
  • [64] F.E. Wiria, N. Sudarmadji, K.F. Leong, C.K. Chua, W.E. Chng, and C.C. Chan. Selective laser sintering adaptation tools for cost effective fabrication of biomedical prototypes. Rapid Prototyping Journal, 16(2):90–99, 2010. doi: 10.1108/13552541011025816.
  • [65] S. Tunchel, A. Blay, R. Kolerman, E. Mijiritsky, and J.A. Shibli. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. International Journal of Dentistry, 2016:8590971, 2016. doi: 10.1155/2016/8590971.
  • [66] J.W. Jung, H. Lee, J.M. Hong, J.H. Park, J.H. Shim, T.H. Choi, and D.W. Cho. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Biofabrication, 7(4):045003, 2015. doi: 10.1088/1758-5090/7/4/045003.
  • [67] M. Averyanova, P. Bertrand, and B. Verquin. Manufacture of Co-Cr dental crowns and bridges by selective laser Melting technology. Virtual and Physical Prototyping, 6(3):179–185, 2012. doi: 10.1080/17452759.2011.619083.
  • [68] H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song and Y. Chen. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceramics International, 42(15):17290–17294, 2014. doi: 10.1016/j.ceramint.2016.08.024.
  • [69] S. Maleksaeedi, H. Eng, F.E. Wiria, T.M.H. Ha, and Z. He. Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. Journal of Materials Processing Technology, 214(7):1301–1306, 2014. doi: 10.1016/j.jmatprotec.2014.01.019.
  • [70] Y. Zou, C.H. Li, J.A. Liu, J.M. Wu, L. Hu, R.F. Gui, and Y.S. Shi. Towards fabrication of high-performance Al2O3 ceramics by indirect selective laser sintering based on particle packing optimization. Ceramics International, 45(10):12654–12662, 2019. doi: 10.1016/j.ceramint.2019.02.203.
  • [71] A. Barazanchi, K.C. Li, B. Al-Amleh, K. Lyons, and J.N. Waddell. Additive technology: update on current materials and applications in dentistry. Journal of Prosthodontics, 26(2):156–163, 2017. doi: 10.1111/jopr.12510.
  • [72] B. Derby. Printing and prototyping of tissues and scaffolds. Science, 338(6109):921–926, 2012. doi: 10.1126/science.1226340.
  • [73] S. Mantha, S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H.M. Pham, and S.D. Tran. Smart hydrogels in tissue engineering and regenerative medicine. Materials, 12(20):3323, 2019. doi: 10.3390/ma12203323.
  • [74] P. Bajaj, R.M. Schweller, A. Khademhosseini, J.L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annual Review of Biomedical Engineering, 16:247–276, 2014. doi: 10.1146/annurev-bioeng-071813-105155.
  • [75] N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni, C. Cha, G. Camci-Unal, M.R. Dokmeci, N.A. Peppas, and A. Khademhosseini. 25th Anniversary Article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26(1):85– 124, 2014. doi: 10.1002/adma.201303233.
  • [76] F. Obregon, C. Vaquette, S. Ivanovski, D.W. Hutmacher, and L.E. Bertassoni. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. Journal of Dental Research, 94(9):143S–152S, 2015. doi: 10.1177/0022034515588885.
  • [77] N. Acciarri, F. Nicolini, and M. Martinoni. Cranioplasty: routine surgical procedure or risky operation. World Journal of Surgical Research, 5(5), 2016.
  • [78] S. Peel and D. Eggbeer. Additively manufactured maxillofacial implants and guides achieving routine use. Rapid Prototyping Journal, 22(1):189–199, 2016. doi: 10.1108/RPJ-01-2014-0004.
  • [79] L. Yaxiong, L. Dichen, L. Bingheng, H. Sanhu, and L. Gang. The customized mandible substitute based on rapid prototyping. Rapid Prototyping Journal, 9(3):167–174, 2003. doi: 10.1108/13552540310477472.
  • [80] L.C. Hieu, E. Bohez, J.V. Sloten, H.N. Phien, E. Vatcharaporn, P.H. Binh, P.V. An, and P. Oris. Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyping Journal, 9(3):175–186, 2003. doi: 10.1108/13552540310477481.
  • [81] P. Rukskul, W. Suvannapruk, and J. Suwanprateeb. Cranial reconstruction using prefabricated direct 3DP porous polyethylene. Rapid Prototyping Journal, 26(2):278–287, 2020. doi: 10.1108/RPJ-08-2018-0209.
  • [82] S. Singare, L. Dichen, L. Bingheng, G. Zhenyu, and L. Yaxiong. Customized design and man- ufacturing of chin implant based on rapid prototyping. Rapid Prototyping Journal, 11(2):113– 118, 2005. doi: 10.1108/13552540510589485.
  • [83] S. Gopakumar. RP in medicine: a case study in cranial reconstructive surgery. Rapid Proto-typing Journal, 10(3):207–211, 2004. doi: 10.1108/13552540410539030.
  • [84] J.H. Park, M. Odkhuu, S. Cho, J. Li, B.Y. Park, and J.W. Kim. 3D-printed titanium implant with pre-mounted dental implants for mandible reconstruction: A case report. Maxillofacial Plastic and Reconstructive Surgery, 42:28, 2020. doi: 10.1186/s40902-020-00272-5.
  • [85] S. Lewin, I.Fleps, J. Åberg, S.J. Ferguson, H. Engqvist, C. Öhman-Mägi, B. Helgason, and C. Persson. Additively manufactured mesh-type titanium structures for cranial implants: E-PBF vs. L-PBF. Materials and Design, 197:109207, 2021. doi: 10.1016/j.matdes.2020.109207.
  • [86] D. Espalin, K. Arcaute, D. Rodriguez, F. Medina, M. Posner, and R. Wicker. Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping Journal, 16(3):164–173, 2010. doi: 10.1108/13552541011034825.
  • [87] E.A. Nasr, A.M. Al-Ahmari, K. Moiduddin, M. Al-Kindi, and A.K. Kamrani. A digital design methodology for surgical planning and fabrication of customized mandible implants. Rapid Prototyping Journal, 23(1):101–109, 2017. doi: 10.1108/RPJ-11-2014-0157.
  • [88] M. Fantini, F. De Crescenzio, L. Ciocca, and F. Persiani. Additive manufacturing to assist prosthetically guided bone regeneration of atrophic maxillary arches. Rapid Prototyping Journal, 21(6):705–715, 2015. doi: 10.1108/RPJ-12-2013-0127.
  • [89] S. Singare, L. Yaxiong, L. Dichen, L. Bingheng, H. Sanhu, and L. Gang. Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyping Journal, 12(4): 206–213, 2006. doi: 10.1108/13552540610682714.
  • [90] X. Li, Y. Huang, L. Zheng, H. Liu, X. Niu, J. Huang, and Y. Fan. Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro. Journal of Biomedical Materials Research Part A, 102(4):1092–1101, 2014. doi: 10.1002/jbm.a.34774.
  • [91] H.N. Singh, S. Agrawal, and A.M. Kuthe. Design of customized implants and 3D printing of symmetric and asymmetric cranial cavities. Journal of the Mechanical Behavior of Biomedical Materials, 146:106061, 2023. doi: 10.1016/j.jmbbm.2023.106061.
  • [92] P.S. Maher, R.P. Keatch, K. Donnelly, R.E. Mackay, and J.Z. Paxton. Construction of 3D biological matrices using rapid prototyping technology. Rapid Prototyping Journal, 15(3):204–210, 2009. doi: 10.1108/13552540910960307.
  • [93] W.S. Chu, S.Y. Jeong, S.G. Kim, W.S. Ha, S.C. Chi, and S.H. Ahn. Fabrication of a biodegrad- able drug delivery system with controlled release made of PLGA/5-FU/hydroxyapatite. Rapid Prototyping Journal, 14(5):293–299, 2008. doi: 10.1108/13552540810907965.
  • [94] A. Frayssinet, D. Petta, C. Illoul, B. Haye, A. Markitantova, D. Eglin, G. Mosser, M. D’Este, and C. Hélary. Extracellular matrix-mimetic composite hydrogels of cross-linked hyaluronan and fibrillar collagen with tunable properties and ultrastructure. Carbohydrate Polymers, 236:116042, 2020. doi: 10.1016/j.carbpol.2020.116042.
  • [95] X. Li, R. Cui, L. Sun, K.E. Aifantis, Y. Fan, Q. Feng, F. Cui, and F. Watari. 3D-Printed Biopolymers for Tissue Engineering Application. International Journal of Polymer Science, 2014:829145, 2014. doi: 10.1155/2014/829145.
  • [96] T.S. Wheeler, N.D. Sbravati, and A.V. Janorkar. Mechanical & cell culture properties of elastinlike polypeptide, collagen, bioglass, and carbon nanosphere composites. Annals of Biomedical Engineering, 41:2042–2055, 2013. doi: 10.1007/s10439-013-0825-3.
  • [97] C.B. Pham, K.F. Leong, T.C. Lim, and K.S. Chian. Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyping Journal, 14(4):246–253, 2008. doi: 10.1108/13552540810896193.
  • [98] J. Chlupáč, E. Filova, and L. Bačáková. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiological Research, 58(S2):S119–S139, 2009.
  • [99] X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 27(9):1917–1923, 2006. doi: 10.1016/j.biomaterials.2005.11.013.
  • [100] M.C. Serrano, S. Nardecchia, C. García-Rama, M.L. Ferrer, J.E. Collazos-Castro, F. Del Monte, and M.C. Gutiérrez. Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials, 35(5):1543–1551, 2014. doi: 10.1016/j.bio materials. 2013.11.017.
  • [101] L. Zhao, H.J. Gwon, Y.M. Lim, Y.C. Nho, and S.Y. Kim. Hyaluronic acid/chondroitin sulfate- based hydrogel prepared by gamma irradiation technique. Carbohydrate Polymers, 102:598– 605, 2014. doi: 10.1016/j.carbpol.2013.11.048.
  • [102] X. Li, X. Liu, W. Dong, Q. Feng, F. Cui, M. Uo, T. Akasaka, and F. Watari. In vitro evaluation of porous poly (L-lactic acid) scaffold reinforced by chitin fiber. Journal of Biomedical Materials Research B: Applied Biomaterials, 90(2):503–509, 2009. doi: 10.1002/jbm.b.31311.
  • [103] H. Tamura, T. Furuike, S.V. Nair, and R. Jayakumar. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers, 84(2):820–824, 2011. doi: 10.1016/j.carbpol.2010.06.001.
  • [104] A. Islam, T. Yasin, and I. Rehman. Synthesis of hybrid polymer networks of irradiated chi tosan/poly (vinyl alcohol) for biomedical applications. Radiation Physics and Chemistry, 96:115–119, 2014. doi: 10.1016/j.radphyschem.2013.09.009.
  • [105] X. Li, Q. Feng, Y. Jiao, and F. Cui. Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polymer International, 54(7):1034–1040, 2005. doi: 10.1002/pi.1804.
  • [106] C.X.F. Lam, X.M. Mo, S.H. Teoh, and D.W. Hutmacher. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering: C, 20(1-2):49–56, 2002. doi: 10.1016/S0928-4931(02)00012-7.
  • [107] R. Gauvin, Y.C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, and A. Khademhosseini. Microfabrication of complex porous tissue engineering scaf- folds using 3D projection Stereolithography. Biomaterials, 33(15):3824–3834, 2012. doi: 10.1016/j.biomaterials.2012.01.048.
  • [108] J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Müeller, and L.G. Griffith. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering, 7(5):557–572, 2004. doi: 10.1089/107632701753213183.
  • [109] M.S.B. Reddy, D. Ponnamma, R. Choudhary, and K.K. Sadasivuni. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers, 13(7):1105, 2021. doi: 10.3390/polym13071105.
  • [110] I. Sousa, A. Mendes, and P.J. Bártolo. PCL scaffolds with collagen bioactivator for applications in tissue engineering. Procedia Engineering, 59:279–284, 2013. doi: 10.1016/ j.proeng.2013.05.122.
  • [111] G. Chen, J. Tanaka, and T. Tateishi. Osteochondral tissue engineering using a PLGA–collagen hybrid mesh. Materials Science and Engineering: C, 26(1):124–129, 2006. doi: 10.1016/j.msec.2005.08.042.
  • [112] C. Zhang, N. Sangaj, Y. Hwang, A. Phadke, C.W. Chang, and S. Varghese. Oligo (trimethylene carbonate)–poly (ethylene glycol)–oligo (trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering. Acta Biomaterialia, 7(9):3362–3369, 2011. doi: 10.1016/j.actbio.2011.05.024.
  • [113] S.S. Kim, H. Utsunomiya, J.A. Koski, B.M. Wu, M.J. Cima, J. Sohn, K. Mukai, L.G. Griffith, and J.P. Vacanti. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Annals of Surgery, 228(1):8–13, 1998.
  • [114] H. Sun, L. Mei, C. Song, X. Cui, and P. Wang. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 27(9):1735–1740, 2006. doi: 10.1016/j.biomaterials.2005.09.019.
  • [115] E.D. Boland, B.D. Coleman, C.P. Barnes, D.G. Simpson, G.E. Wnek, and G.L. Bowlin. Electrospinning polydioxanone for biomedical applications. Acta Biomaterialia, 1(1):115– 123, 2005. doi: 10.1016/j.actbio.2004.09.003.
  • [116] M.J Smith, M.J. McClure, S.A. Sell, C.P. Barnes, B.H. Walpoth, D.G. Simpson, and G.L. Bowlin. Suture-reinforced electrospun polydioxanone–elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study. Acta Biomaterialia, 4(1):58–66, 2008. doi: 10.1016/j.actbio.2007.08.001.
  • [117] B. Baroli. Hydrogels for tissue engineering and delivery of tissue-inducing substances. Journal of Pharmaceutical Sciences, 96(9):2197–2223, 2007. doi: 10.1002/jps.20873.
  • [118] A. Abruzzo, C. Fiorica, V.D. Palumbo, R. Altomare, G. Damiano, M.C. Gioviale, and A.I. Lo Monte. Using polymeric scaffolds for vascular tissue engineering. International Journal of Polymer Science, 2014:689390, 2014. doi: 10.1155/2014/689390.
  • [119] A. Mahajan, G. Singh, and S. Devgan. Additive manufacturing of metallic biomaterials: A concise review. Archives of Civil and Mechanical Engineering, 23(3):187, 2023. doi:10.1007/s43452-023-00730-7.
  • [120] Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, and J.H. Schleifenbaum. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomaterialia, 98:3–22, 2019. doi: 10.1016/j.actbio.2019.04.046.
  • [121] R. Allavikutty, P. Gupta, T.S. Santra, and J. Rengaswamy. Additive manufacturing of Mg alloys for biomedical applications: Current status and challenges. Current Opinion in Biomedical Engineering, 18:100276, 2021. doi: 10.1016/j.cobme.2021.100276.
  • [122] M.N. Jahangir, M.A.H. Mamun, and M.P. Sealy. A review of additive manufacturing of magnesium alloys. In: AIP Conference Proceedings, 1980(1):030026, 2018. doi: 10.1063/1.5044305.
  • [123] Y. Lv, B. Wang, G. Liu, Y. Tang, E. Lu, K. Xie, and L. Wang. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review. Frontiers in Bioengineering and Biotechnology, 9:641130, 2021. doi: 10.3389/fbioe.2021.641130.
  • [124] Y. Yang, G. Wang, H. Liang, C. Gao, S. Peng, L. Shen, and C. Shuai. Additive manufacturing of bone scaffolds. International Journal of Bioprinting, 5(1):148, 2019. doi: 10.18063/IJB.v5i1.148.
  • [125] S. Singh, S. Ramakrishna, and R. Singh. Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25:185–200, 2017. doi: 10.1016/j.jmapro.2016.11.006.
  • [126] M. Milazzo, N. C. Negrini, S. Scialla, B. Marelli, S. Farè, S. Danti, and M.J. Buehler. Additive manufacturing approaches for hydroxyapatite-reinforced composites. Advanced Functional Materials, 29(35):1903055, 2019. doi: 10.1002/adfm.201903055.
  • [127] J. Sun, D. Ye, J. Zou, X. Chen, Y. Wang, J. Yuan, and J. Bai. A review on additive manufacturing of ceramic matrix composites. Journal of Materials Science & Technology, 138:1–16, 2023. doi: 10.1016/j.jmst.2022.06.039.
  • [128] Y. Li, Z. Feng, L. Huang, K. Essa, E. Bilotti, H. Zhang, and L. Hao. Additive manufacturing high performance graphene-based composites: A review. Composites Part A: Applied Science and Manufacturing, 124:105483, 2019. doi: 10.1016/j.compositesa.2019.105483.
  • [129] A.P.M. Madrid, S.M. Vrech, M.A. Sanchez, and A.P. Rodriguez. Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering: C, 100:631–644, 2019. doi: 10.1016/j.msec.2019.03.037.
  • [130] B.Gurumurthy and A.V. Janorkar. Improvements in mechanical properties of collagen-based scaffolds for tissue engineering. Current Opinion in Biomedical Engineering, 17:100253, 2021. doi: 10.1016/j.cobme.2020.100253.
  • [131] E.R. Ghomi, F. Khosravi, R.E. Neisiany, M. Shakiba, M. Zare, R. Lakshminarayanan, and S. Ramakrishna. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Current Opinion in Biomedical Engineering, 22:100393, 2022. doi: 10.1016/ j.cobme.2022.100393.
  • [132] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, and Y.M. Xie. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83:127–141, 2016. doi: 10.1016/j.biomaterials.2016.01.012.
  • [133] Z. Wang, C. Wang, C. Li, Y. Qin, L. Zhong, B. Chen, and J. Wang. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: a review. Journal of Alloys and Compounds, 717:271–285, 2017. doi: 10.1016/j.jallcom.2017.05.079.
  • [134] R. Agarwala, C.J. Anciano, J. Stevens, R.A. Chin, and P. Sparks. 3D printing for chest wall reconstructive surgery. Rapid Prototyping Journal, 26(7):1217–1225, 2020. doi: 10.1108/RPJ- 11-2018-0299.
  • [135] G. Sisias, R. Phillips, C.A. Dobson, M.J. Fagan, and C.M. Langton. Algorithms for accurate rapid prototyping replication of cancellous bone voxel maps. Rapid Prototyping Journal, 8(1):6–24, 2002. doi: 10.1108/13552540210413266.
  • [136] L.E. Melgoza, G. Vallicrosa, L. Serenó, J. Ciurana, and A.C. Rodríguez. Rapid tooling using 3D printing system for manufacturing of customized tracheal stent. Rapid Prototyping Journal, 20(1):2–12, 2014. doi: 10.1108/RPJ-01-2012-0003.
  • [137] S. Swann. Integration of MRI and stereolithography to build medical models: a case study. Rapid Prototyping Journal, 2(4):41–46, 1996. doi: 10.1108/13552549610153398.
  • [138] A. Soni, Y.K. Modi, and S. Agrawal. Computed tomography based 3D modeling and analysis of human knee joint. Materials Today: Proceedings, 5(11):24194–24201, 2018. doi: 10.1016/j.matpr.2018.10.214.
  • [139] Y.K. Modi and N. Khare. Patient-specific polyamide wrist splint using reverse engineering and selective laser sintering. Materials Technology, 37(2):71–78, 2022. doi: 10.1080/10667857.2020.1810926.
  • [140] Z. Chen, D. Li, B. Lu, Y. Tang, M. Sun, and Z. Wang. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyping Journal, 10(5):327–333, 2004. doi: 10.1108/13552540410562368.
  • [141] R. Bibb, D. Eggbeer, P. Evans, A. Bocca, and A. Sugar. Rapid manufacture of custom-fitting surgical guides. Rapid Prototyping Journal, 15(5):346–354, 2009. doi: 10.1108/135525 40910993879
  • [142] K.W. Lin, C.J. Hu, W.W. Yang, L.W. Chou, S.H Wei, C.S. Chen, and P.C. Sun. Biomechanical evaluation and strength test of 3D-printed foot orthoses. Applied Bionics and Biomechanics, 2019:4989534, 2019. doi: 10.1155/2019/4989534.
  • [143] M. van Eijnatten, F.H. Berger, P. de Graaf, J. Koivisto, T. Forouzanfar, and J. Wolf. Influence of CT parameters on STL model accuracy. Rapid Prototyping Journal, 23(4):678–685, 2017. doi: 10.1108/RPJ-07-2015-0092.
  • [144] J. Kwon, G.B. Kim, S. Kang, Y. Byeon, H.S. Sa, and N. Kim. Accuracy of 3D printed guide for orbital implant. Rapid Prototyping Journal, 26(8):1363–1370, 2020. doi: 10.1108/RPJ-07- 2019-0193.
  • [145] T. Mallepree and D. Bergers. Accuracy of medical RP models. Rapid Prototyping Journal, 15(5):325–332, 2009. doi: 10.1108/13552540910993842.
  • [146] M.N. Sudin, S.A. Shamsudin, and M.A. Abdullah. Effect of part features on dimensional accuracy of FDM model. APRN Journal of Engineering and Applied Sciences, 11(3):8067–8072, 2016.
  • [147] M.C. McCarty, S.J. Chen, J.D. English, and F. Kasper. Effect of print orientation and duration of ultraviolet curing on the dimensional accuracy of a 3-dimensionally printed orthodontic clear aligner design. American Journal of Orthodontics and Dentofacial Orthopedics, 158(6):889– 897, 2020. doi: 10.1016/j.ajodo.2020.03.023.
  • [148] E. Vanegas, R. Igual, and I. Plaza. Piezoresistive breathing sensing system with 3D printed wearable casing. Journal of Sensors, 2019:2431731, 2019. doi: 10.1155/2019/2431731.
  • [149] E.O. Ige, A. Adetunla, A. Awesu, and O.K. Ajayi. Sensitivity analysis of a smart 3D-printed hand prosthetic. Journal of Robotics, 2022:9145352, 2022. doi: 10.1155/2022/9145352.
  • [150] W. Peng, R. Zheng, H. Wang, X. and Huang. Reconstruction of bony defects after tumor resection with 3D-printed anatomically conforming pelvic prostheses through a novel treatment strategy. BioMed Research International, 2020:8513070, 2020. doi: 10.1155/2020/8513070.
  • [151] F.K. Kozaniti, D.N. Metsiou, A.E. Manara, G. Athanassiou, and D.D. Deligianni. Recent advancements in 3D printing and bioprinting methods for cardiovascular tissue engineering. Bioengineering, 8(10):133, 2021. doi: 10.3390/bioengineering8100133.
  • [152] J. Jang, J.Y. Park, G. Gao, and D.W. Cho. Biomaterials-based 3D cell printing for next- generation therapeutics and diagnostics. Biomaterials, 156:88–106, 2018. doi: 10.1016/j.bio materials.2017.11.030.
  • [153] N.J. Castro, C. Meinert, P. Levett, and D.W. Hutmacher. Current developments in multifunctional smart materials for 3D/4D bioprinting. Current Opinion in Biomedical Engineering, 2:67–75, 2017. doi: 10.1016/j.cobme.2017.04.002.
  • [154] Z. Wan, P. Zhang, Y. Liu, L. Lv, Y. Zhou. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia, 101:26–42, 2020. doi: 10.1016/j.actbio.2019.10.038.
  • [155] S. Saska, L. Pilatti, A. Blay, and J.A. Shibli. Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers, 13(4):563, 2021. doi: 10.3390/polym13040563.
  • [156] R.M. Maina, M.J. Barahona, M. Finotti, T. Lysyy, P. Geibel, F. D’Amico, and J.P. Geibel. Generating vascular conduits: From tissue engineering to three-dimensional bioprinting. Innovative Surgical Sciences, 3(3):203–213, 2018. doi: 10.1515/iss-2018-0016.
  • [157] Z.U. Arif, M.Y. Khalid, W. Ahmed, H. Arshad. A review on four-dimensional (4D) bioprinting in pursuit of advanced tissue engineering applications. Bioprinting, 27:e00203, 2022. doi: 10.1016/j.bprint.2022.e00203.
  • [158] S. Joshi, K. Rawat, C. Karunakaran, V. Rajamohan, A.T. Mathew, K. Koziol, K., and A.S.S. Balan. 4D printing of materials for the future: Opportunities and challenges. Applied Materials Today, 18:100490, 2020. doi: 10.1016/j.apmt.2019.100490.
  • [159] Y.S. Alshebly, M. Nafea, M.S.M. Ali, and H.A. Almurib. Review on recent advances in 4D printing of shape memory polymers. European Polymer Journal, 159:110708, 2021. doi: 10.1016/j.eurpolymj.2021.110708.
  • [160] S. D’Agostino, M. Rimann, P. Gamba, G. Perilongo, M. Pozzobon, and M. Raghunath. Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model. Bioprinting, 27:e00213, 2022. doi: 10.1016/j.bprint.2022.e00213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfd94dc5-b69c-4e5c-89b5-c52e1d5553cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.