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Abstract. We define and study a perfect (1, 2)-dominating set which is a special
case of a (1, 2)-dominating set. We discuss the existence of a perfect (1, 2)-dominating
set in graphs with at most two vertices of maximum degree. In particular, we present
a complete solution if the maximum degree equals n − 1 or n − 2.
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1. INTRODUCTION

For concepts not defined here, see [4]. Let G = (V (G), E(G)) be an undirected, simple
graph with vertex set V (G) and edge set E(G). The degree of a vertex x ∈ V (G) is
denoted by dG(x) and the maximum degree of G is denoted by ∆(G). The set of all
vertices of maximum degree is denoted by S∆(G). The number δ(G) is the minimum
degree of G. A vertex of degree 1 is a leaf and L(G) = {x ∈ V (G) : dG(x) = 1}.
By NG(v) and NG[v] = NG(v) ∪ {v} we mean an open neighborhood and a closed
neighborhood of a vertex v, respectively. The distance between vertices x, y in G is
denoted by dG(x, y). Let V0 ⊂ V , then for x ∈ V \ V0 the distance is defined as
dG(x, V0) = min{dG(x, y) : y ∈ V0}.

A subset D ⊆ V (G) is a dominating set of G if for every vertex x ∈ V (G) \ D there
is y ∈ D such that xy ∈ E(G). In particular, V (G) is also dominating. To simplify
the notation, we will sometimes write DS instead of the dominating set. The idea
of a DS arose in chessboard problems described by de Jaenish [9] in 1862 and was
formalized a hundred years later by Berge [1] and Ore [16] in 1962. Ore first used
the name dominating set and dominating number, followed in 1977 by Cockayne
and Hedetniemi [3] published a survey of domination results, where they used the
symbol γ(G) to denote the domination number. Since then, a lot of results related to
domination have been written. Looking through the literature we see that dominating
sets have been studied in various directions in recent decades, in particular many
different variants and generalizations can be found.
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The great interest in domination theory results from its potential applications.
For example, recently Raczek in the publication [18] mentioned many applications
of domination parameters. It just cite examples of applications related to: ranging
from environmental sensors, emergency vehicle communication, road safety, health,
home, peer-to-peer messaging, disaster rescue operations, aviation/land/naval de-
fense, weapons and robots. In 2008 Hedetniemi et al. introduced the concept of
(1, k)-dominating sets being a weaker version of dominating sets, see [7]. Let k ∈ N.
A subset D ⊆ V (G) is a (1, k)-dominating set (shortly (1, k)-DS) if each vertex v of
V \ D has a neighbor in D and there is another vertex of D at a distance at most k
from v. In particular V (G) is also a (1, k)-DS for every k ≥ 1.

Note that if k = 1, then we obtain a (1, 1)-DS known in the literature as
2-dominating sets or double dominating sets, see for example [2, 5, 6, 8]. In this
paper, to unify the symbolism and nomenclature, we will use the term (1, 1)-DS
instead of 2-dominating or double dominating sets. From the definition of a (1, k)-DS,
it follows that the parameter k is not defined clearly.

Theorem 1.1 ([7]). Let k, l ∈ N and k > l. Every (1, l)-DS is a (1, k)-DS.

In [7] it was also proved that studying of a (1, k)-DS makes sense only for
k ∈ {1, 2, 3, 4}.

Theorem 1.2 ([7]). Every DS of cardinality at least 2 in a connected graph G with
γ(G) ≥ 2 is a (1, 4)-DS.

Because (1, 1)-DS are rather good described, it is natural to next consider the
case of (1, 2)-dominating sets. We can observe that a (1, 2)-DS is a weaker version
of a (1, 1)-DS because a vertex outside the (1, 2)-DS must have only one adjacent
vertex in this set and the other one should be sufficiently close, i.e. at the distance
of at most 2.

The concept of a (1, k)-DS and outlined research directions initiated the interest
of mathematicians in studying of a (1, 2)-DS. Since 2008, some interesting results
have appeared, for example Michalski et al. in [15] and Kayathri and Vallirani in [10]
studied parameters of (1, 2)-domination, Raczek in [17, 18] considered computational
complexity of it. Independent dominating sets in graphs and their product were also
studied, see for example [7, 13, 14]. From the definition of a (1, 2)-DS, it immediately
follows that every (1, 1)-DS is a (1, 2)-DS. Consequently, Michalski introduced in [12]
and then studied in [11, 15] a proper (1, 2)-dominating set.

A subset D ⊂ V (G) is a proper (1, 2)-DS if D is a (1, 2)-DS and is not a (1, 1)-DS,
i.e. D is (1, 2)-dominating and there is a vertex x ∈ V (G) \ D such that x has exactly
one neighbor in the set D and there is a vertex u ∈ D such that dG(x, u) = 2.

Since the set V (G) is a (1, 1)-DS, it is not the proper (1, 2)-DS. Firstly, the problem
of the existence of a proper (1, 2)-DS in graphs was solved.

Theorem 1.3 ([15]). A connected graph G has a proper (1, 2)-DS if and only if G is
not complete.

Motivated by the above we continue studying (1, 2)-dominating sets and introduce
a perfect (1, 2)-DS being the special case of the proper (1, 2)-DS.
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A subset D ⊂ V (G) is a perfect (1, 2)-dominating set of G (shortly (1, 2)-PDS) if
every x ∈ V (G) \ D has exactly one neighbor in the set D and there is a vertex u ∈ D
such that dG(x, u) = 2. Then we say that x is perfect (1, 2)-dominated by D (shortly
x is (1, 2)-PD).

It is obvious that if D is a perfect (1, 2)-dominating set, then it is also a proper
(1, 2)-DS and V (G) is not a perfect (1, 2)-dominating set. Studying the (1, 2)-PDS
firstly we have to solve the problem of the existence of the (1, 2)-PDS in graphs. In this
paper we consider the class of graphs with at most two vertices of maximum degree.

2. (1,2)-PDS IN GRAPHS WITH ∆(G) = n − 1

In this section we study the problem of the existence of a (1, 2)-PDS in graphs of the
maximum degree ∆(G) = n − 1 for n ≥ 3. We give the complete characterization of
graphs with ∆(G) = n − 1 which have a (1, 2)-PDS.

Theorem 2.1. Let G be a connected n-vertex graph of the maximum degree
∆(G) = n − 1, n ≥ 3. If G has a (1, 2)-PDS, then G has the unique vertex of maximum
degree ∆(G).

Proof. Let ∆(G) = n − 1, n ≥ 3 and V (G) = S∆(G) ∪ S, where S = {x ∈ V (G) :
dG(x) < ∆(G)}. Suppose that D is a (1, 2)-PDS of the graph G. Clearly, |D| ≥ 2.
Let, for a contradiction, S∆(G) = {x1, . . . , xt}, 2 ≤ t ≤ n be the set of vertices of the
maximum degree ∆(G). Then S = {u1, . . . , un−t} and observe that it can be empty.
Let y ∈ S and consider the following possibilities.

(i) xi, xj ∈ D, for 1 ≤ i, j ≤ t.
Since dG(xi) = dG(xj) = n − 1, y is (1, 1)-dominated by D, a contradiction to
perfectness of D.

(ii) xi ∈ D and uj ∈ D, for 1 ≤ i ≤ t, 1 ≤ j ≤ n − t.
Because |S∆(G)| ≥ 2, there is xp ∈ S∆(G) such that p ̸= i and xp is
(1, 1)-dominated by D, a contradiction.

(iii) uj , up ∈ D, for 1 ≤ j, p ≤ n − t.
Then every xi ∈ S∆(G) is (1, 1)-dominated by D, a contradiction.

From above cases the theorem follows.

Theorem 2.2. Let G be a connected n-vertex graph, n ≥ 3 with the unique vertex
of maximum degree ∆(G) = n − 1. G has a (1, 2)-PDS if and only if the vertex of
maximum degree is a cutvertex.

Proof. Let S∆(G) = {x} and suppose that x is a cutvertex. Then V (G)\{x} =
⋃r

i=1 Vi,
where r ≥ 2, for each i, j ∈ {1, . . . , r}, i ̸= j holds Vi ∩ Vj = ∅ and each Vi induces
a connected subgraph. We will show that, for each i ∈ {1, . . . , r}, the set Di = Vi ∪{x}
is a (1, 2)-PDS. Let y ∈ V (G)\Di, 1 ≤ i ≤ r. Since dG(x) = n−1, so y is adjacent to x
and consequently y is dominated by Di. Moreover, Vi∩Vj = ∅ for all j ∈ {1, . . . , r}\{i},
then dG(y, Vi) ≥ 2. Because x is adjacent to every vertex of Vi, so there is a path
y − x − u, where u ∈ Vi and consequently dG(y, Vi) = 2. Hence, Di is a (1, 2)-PDS.
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Conversely, suppose that G has a (1, 2)-PDS and let x be the unique vertex of
maximum degree ∆(G) = n − 1. We will show that x is a cutvertex. Let D be
a (1, 2)-PDS of G. Then x ∈ D, otherwise there are at least two vertices u, v ∈ D
adjacent to x and x is (1, 1)-dominated, a contradiction to perfectness of a (1, 2)-PDS.
Clearly, V (G) \ D ̸= ∅ because of V (G) is not a (1, 2)-PDS. Let y ∈ V (G) \ D.
Then y is adjacent to exactly one vertex from D, otherwise y is (1, 1)-dominated,
a contradiction to perfectness of a (1, 2)-PDS. By the assumption, x is the unique
vertex of the maximum degree ∆(G) = n − 1, so NG(y) ∩ D = {x}. Consequently,
for each y ∈ V (G) \ D and for u ∈ D \ {x} we have u and y are not adjacent, so
V (G) \ {x} contains at least two components: D \ {x} and V (G) \ D which shows that
x is a cutvertex of G. Thus, the theorem is proved.

3. (1,2)-PDS IN GRAPHS WITH ∆(G) = n − 2

In this section, we give necessary and sufficient conditions for the existence of
a (1, 2)-PDS in graphs with one or two vertices of maximum degree ∆(G) = n − 2.

Theorem 3.1. Let G be a connected n-vertex graph, n ≥ 3 with L(G) ̸= ∅. Then G
has a (1, 2)-PDS.

Proof. Let x ∈ L(G) be an arbitrary leaf of the graph G. Then the set V (G) \ {x} is
a (1, 2)-PDS. Thus, the theorem is proved.

Therefore, in future considerations, we assume that δ(G) ≥ 2.
First we consider graphs with |S∆(G)| = 1.

Theorem 3.2. Let G be a connected n-vertex graph, n ≥ 6, δ(G) ≥ 2, ∆(G) = n − 2,
S∆(G) = {x} and y is the unique vertex nonadjacent to x. Let N(x) induce a connected
subgraph. A graph G has a (1, 2) − PDS if and only if there is u ∈ N(x) such that:

(i) N(u) ∩ N(y) = ∅ and
(ii) N(x) \ N(u) = N(y) ∪ {u} and
(iii) every vertex from N(u) \ {x, y} is adjacent to a vertex from N(y).

Proof. Suppose that there is u ∈ N(x) such that conditions (i), (ii), (iii) hold. We
shall show that D = {u, y} is a (1, 2)-PDS of G. Clearly, the vertex x is dominated by
u and by the connectivity of G there is u′ ∈ N(x) adjacent to y. Hence, there is a path
x − u′ − y in graph G, and therefore x is (1, 2)-PD by D. Let u′′ ∈ N(x) \ {u}. Then,
by connectivity of N(x) and from (ii), it follows that u′′ is dominated either by u or y.
If u′′ ∈ N(u), then from (iii), it follows that there is a vertex v ∈ N(y) adjacent to
u′′ and there is a path u′′ − v − y. If u′′ ∈ N(y) \ {u}, then u′′ /∈ N(u) and there is
a path u′′ − x − u. Moreover, from (i), the vertex u′′ is not (1, 1)-dominated, so u′′

is (1, 2)-PD by D.
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Assume now that G has a (1, 2)-PDS, say D. We shall show that (i), (ii) and (iii)
hold. To prove it firstly we show the following claims.

(a) D ̸= {x, y}.
Assume that D = {x, y} is a (1, 2)-PDS. Then, by the connectivity of G, there is

a vertex u ∈ N(x) ∩ N(y) such that u is (1, 1)-dominated by D, a contradiction.
(b) D ̸= {x, u} for an arbitrary u ∈ N(x).
By the connectivity of N(x), it follows that there is u′ ∈ N(x) adjacent to u, so u′

is (1, 1)-dominated by D, a contradiction.
(c) |D ∩ N(x)| = 1.
If D ∩ N(x) = ∅, then D = {x, y}, a contradiction with (a). Suppose that

|D ∩ N(x)| ≥ 2. Then there exists N(x) ⊇ Dp = {u1, . . . , up}, 2 ≤ p ≤ n − 2 such
that Dp ⊆ D. Clearly, x ∈ D, otherwise x is (1, 1)-dominated by D. If p < n − 2,
then there is u′ ∈ N(x) \ Dp adjacent to some vertex of Dp and by x ∈ D the vertex
u′ is (1, 1)-dominated, a contradiction. So Dp = N(x). By δ(G) ≥ 2, it follows that
the vertex y is adjacent to at least two vertices of N(x), so y is (1, 1)-dominated,
a contradiction.

Above claims imply that D = {u, y} for some u ∈ N(x). We show that the vertex
u satisfies (i), (ii) and (iii). Since D is a (1, 2)-PDS, so every vertex u′ ∈ N(x) \ {u} is
adjacent either to u or y, otherwise it is (1, 1)-dominated. Consequently, (i) and (ii)
hold. Because G is connected and δ(G) ≥ 2, so the set N(x) \ {u} is partitioned into
nonempty and disjoint subsets N(u) \ {x} and N(y) \ {u}. Moreover, by (1, 2)-PD
of D we obtain that every vertex from N(u) \ {x, y} has to be adjacent to some vertex
in N(y), so the condition (iii) holds. Thus, the theorem is proved.

Theorem 3.3. Let G be a connected graph of order n, n ≥ 6, δ(G) ≥ 2,
∆(G) = n − 2, S∆(G) = {x} and y is the unique vertex nonadjacent to x. Let N(x)
induce a disconnected subgraph with components Ni, i ∈ {1, 2, . . . , p}, p ≥ 2. A graph
G has a (1, 2)-PDS if and only if there is 1 ≤ i ≤ p such that either |V (Ni)∩N(y)| ≤ 1
or there is u ∈ V (Ni) such that

(i) N(u) ∩ N(y) = ∅ and
(ii) V (Ni) \ N(u) = [N(y) ∩ V (Ni)] ∪ {u} and
(iii) every vertex from N(u) \ {x, y} is adjacent to a vertex from N(y) and
(iv)

p⋃
j=1,j ̸=i

V (Nj) ⊆ N(y).

Proof. Suppose that there is 1 ≤ i ≤ p such that |V (Ni) ∩ N(y)| ≤ 1. We shall show
that G has a (1, 2)-PDS. If |V (Ni) ∩ N(y)| = 0, then the set D = V (G) \ V (Ni)
is the (1, 2)-PDS of G. If |V (Ni) ∩ N(y)| = 1, then the set D = V (Ni) ∪ {x} is
a (1, 2)-PDS of G.

Suppose that for any i ∈ {1, . . . , p} we have |V (Ni) ∩ N(y)| ≥ 2 and there is
u ∈ V (Ni) such that conditions (i)–(iv) hold. Proving analogously as in Theorem 3.2
we show that the set D = {u, y} is a (1, 2)-PDS.

Conversely, let us assume that a graph G has a (1, 2)-PDS, say D. Proving anal-
ogously as (a) in Theorem 3.2 we obtain that D ̸= {x, y}. Moreover, we show the
following claims.
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(d) If x, y ∈ D, then N(y) ⊂ D.
Suppose on contrary that there is u′ ∈ N(y) such that u′ /∈ D. Then u is dominated

by x and y simultaneously, so a vertex u′ is (1, 1)-dominated by D, a contradiction.
(e) For an arbitrary i ∈ {1, . . . , p} holds V (Ni) ⊂ D or |V (Ni) ∩ D| ≤ 1.
If |V (Ni)| = 1, then (e) holds. Suppose that there is D′ ⊆ V (Ni), D′ ⊂ D and

|D′| ≥ 2. Clearly, x ∈ D otherwise x is (1, 1)-dominated by D. If D′ = V (Ni), then (e)
holds. If D′ ⊂ V (Ni), then by the connectivity of Ni, it follows that there is u′ ∈ V (Ni)
adjacent to u′′ ∈ D′, so u′ is dominated by u′′ and x simultaneously. Consequently, u′

is (1, 1)-dominated, a contradiction.
From the fact that D = {x, y}, it follows that there exists a vertex u ∈ V (Ni)

such that u ∈ D. Then, based on (e), we must consider two cases: either V (Ni) ⊂ D
or exactly one vertex u belongs to D. In the first case, by (d), we obtain that
|V (Ni) ∩ N(y)| ≤ 1. In the second case, when u is a unique vertex from V (Ni)
that belongs to D, we obtain that a set {u, y} is a (1, 2)-PDS and conditions (i)–(iv)
are satisfied. Thus, the theorem is proved.

Now we will consider cases when |S∆(G)| = 2. We will distinguish cases when
vertices x and y are adjacent or not and their neighborhoods are the same or different.

Theorem 3.4. Let G be an n-vertex connected graph, n ≥ 5 and δ(G) ≥ 2, ∆(G) =
n − 2, such that S∆(G) = {x, y} and x, y are not adjacent. A graph G has a (1, 2)-PDS
if and only if there is a vertex of degree 2 in G.

Proof. From the fact that x and y are not adjacent, it follows that N(x) = N(y).
Let n ≥ 5 and suppose that there is u ∈ V (G) such that dG(u) = 2. Clearly,
u ∈ V (G) \ S∆(G). Then D1 = {x, u} and D2 = {y, u} are (1, 2)-PDS of a graph G.

Suppose now that G has a (1, 2)-PDS, say D. We shall show that there is the vertex
u ∈ V (G) such that dG(u) = 2. Because D is a (1, 2)-PDS, so |D| ≥ 2 and either x /∈ D
or y /∈ D, otherwise D is (1, 1)-dominating, a contradiction with the perfectness of G.
Moreover, |(V (G) \ {x, y}) ∩ D| ≤ 1, otherwise vertices x and y are (1, 1)-dominated
by D, a contradiction. Without loose of the generality, suppose that y /∈ D. Then
x ∈ D and there is a vertex u ∈ V (G) \ {x, y} such that u ∈ D. If dG(u) ≥ 3, then
there is v ∈ V (G) \ {x, y} adjacent to u. Consequently, v is (1, 1)-dominated by D,
a contradiction. From the above, it follows that there is a vertex u ∈ V (G) \ {x, y}
such that dG(u) = 2, which ends the proof.

Theorem 3.5. Let G be an n-vertex connected graph, n ≥ 6 and δ(G) ≥ 2,
∆(G) = n − 2, such that S∆(G) = {x, y}, x, y are adjacent, N [x] = N [y] and
R = N(x) \ {y}. Let u be the unique vertex that is neither adjacent to x nor to y.
A graph G has a (1, 2)-PDS if and only if there is a vertex v ∈ R such that every
v′ ∈ R \ {v} is adjacent to either u or v and N(u) ∩ N(v) = ∅ and

(i) uv ∈ E(G) and |N(u)| ≥ 3 or
(ii) uv /∈ E(G) and every vertex from N(v) \ {x, y} is adjacent to a vertex from N(u).

Proof. Let G be an n-vertex connected graph, n ≥ 6 and ∆(G) = n − 2, such that
S∆(G) = {x, y}, x, y are adjacent and N [x] = N [y]. Let u be a unique vertex that is
neither adjacent to x nor to y and R = N(x) \ {y}. Then there is no v′ ∈ R adjacent
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to every v′′ ∈ R \ {v′}, otherwise dG(v′) = n − 2 which is a contradiction with the
cardinality of S∆(G). Assume that v ∈ R such that every v′ ∈ R \ {v} is adjacent to
either u or v and N(u) ∩ N(v) = ∅ and (i) or (ii) are valid. We will prove that a set
D = {u, v} is a (1, 2)-PDS of a graph G. Vertices x, y are dominated by v and for u ∈ D
we have dG(x, u) = dG(y, u) = 2, so x, y are (1, 2)-PD by D. If a vertex v′ ∈ N(u),
then v′ is dominated by u and by connectivity of G there exists a path v′ − x − v
in a graph G. Hence, v′ is (1, 2)-PD by D. If v′ ∈ N(v), then v′ is dominated by v.
If a condition (i) is valid, then there exists a path v′ − v − u in G and v′ is (1, 2)-PD
by D. It is obvious that dG(v) ≤ n − 3 because |N(u)| ≥ 3 and N(u) ∩ N(v) = ∅.

If a condition (ii) is valid, then there exists a vertex v′′ ∈ N(u) such that v′v′′ ∈
E(G). Hence, there is a path v′ − v′′ − u in G and v′ is (1, 2)-PD by D. Because of
the fact that N(u) ∩ N(v) = ∅ vertices from the set R \ {v} are not (1, 1)-dominated.

Conversely, assume that G has a (1, 2)-PDS, and we will denote it by D. Firstly
we prove the following claims.

(1) D ̸= {x, y}.
Assume that D = {x, y}. Then, by connectivity of G and N [x] = N [y], every vertex

from the set R is (1, 1)-dominated, a contradiction.
(2) u ∈ D.
Assume that u /∈ D. Then vertices x, y are not (1, 2)-PD by D, because a vertex u

is the only vertex in G such that dG(x, u) = dG(y, u) = 2, a contradiction.
(3) x /∈ D and y /∈ D.
Assume that x ∈ D and, by (2), u ∈ D. Then every vertex from the set N(x) \ {y}

is dominated by x. On the other hand there exists a vertex v′ ∈ R adjacent to u ∈ D.
Hence, v′ is (1, 1)-dominated, a contradiction. Analogously we can prove that y /∈ D.

(4) |D ∩ R| = 1.
If D ∩ R = ∅, then D = {x, y} or D = {x, u} or D = {y, u}, a contradiction with

(1) and (3). If |D ∩ R| ≥ 2, then vertices x and y are (1, 1)-dominated by N [x] = N [y],
a contradiction.

Above claims (1)–(4) imply that there exists a vertex v ∈ R such that v ∈ D and
dG(v) ≤ n − 3 because v /∈ S∆(G). Therefore, D = {u, v}. It is obvious that vertices x
and y are (1, 2)-PD by D. The fact that D is a (1, 2)-PDS follows that every vertex
from R \ {v} is adjacent to either u or v, otherwise there exists a vertex w such that
either w is not dominated by D or w is (1, 1)-dominated by D. Hence, N(u)∩N(v) = ∅.
By assumption that G is a connected graph and δ(G) ≥ 2, then a vertex u is adjacent
to at least two vertices from the set R. If one of them is a vertex v, then u has to be
adjacent to three vertices since v /∈ S∆(G). Hence, the condition (i) is valid. If u is
not adjacent to v, then every vertex from N(v) has to be adjacent to a vertex from
N(u), by the fact that D = {u, v} is the (1, 2)-PDS. Consequently, the condition (ii)
is valid. Thus, the theorem is proved.

Theorem 3.6. Let G be an n-vertex connected graph, n ≥ 5 and δ(G) ≥ 2,
∆(G) = n − 2, such that S∆(G) = {x, y}, x, y are adjacent and N [x] ̸= N [y]. Let
u1, u2 ∈ V (G) are vertices such that u1 ∈ N(x) \ N [y] and u2 ∈ N(y) \ N [x].
Let R = V (G) \ {x, y, u1, u2} and no vertex in R is adjacent to all other vertices
in this set. A graph G has a (1, 2)-PDS if and only if
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(i) every vertex v ∈ R is adjacent to either u1 or u2 and N(u1) ∩ N(u2) = ∅ or
(ii) N(u1) = {x, u2} and u2 is not adjacent to every u′ ∈ R or N(u2) = {y, u1} and

u1 is not adjacent to every u′ ∈ R.

Proof. Let G be an n-vertex connected graph, n ≥ 5 and ∆(G) = n − 2, such that
S∆(G) = {x, y}, x, y are adjacent and N [x] ̸= N [y]. Let u1, u2 ∈ V (G) are vertices
such that u1 ∈ N(x)\N [y] and u2 ∈ N(y)\N [x]. Let R = V (G)\{x, y, u1, u2} and no
vertex in R is adjacent to all other vertices in this set. Assume that the condition (i) or
(ii) is valid. We shall show that a graph G has a (1, 2)-PDS. Assume that the condition
(i) holds. We will prove that D = {u1, u2} is a (1, 2)-PDS of G. Every vertex v ∈ R
is dominated by u1 or u2 and is not (1, 1)-dominated because N(u1) ∩ N(u2) = ∅.
If v ∈ R is adjacent to u1, then there exists a path v − y − u2. Thus, v is (1, 2)-PD
by D. It is obvious that x, y are (1, 2)-PD by D because x is adjacent to u1 and y
is adjacent to u2. From the fact that xy ∈ E(G) there exist paths x − y − u2 and
y − x − u1. Now, assume that the condition (ii) holds. Then u1u2 ∈ E(G). We will
show that D1 = {x, u1} or D2 = {y, u2} is a (1, 2)-PDS of G. If N(u1) = {x, u2}, then
every v ∈ N(x) \ {u1} is dominated by x and dG(v, u1) = 2. A vertex u2 /∈ N(x) is
dominated by u1 and dG(u2, x) = 2. A vertex u2 is not adjacent to every vertex from
R, hence dG(u2) ≤ n − 3. Analogously we can prove if D2 = {y, u2} is a (1, 2)-PDS.

Conversely, assume that G has a (1, 2)-PDS. We will prove that conditions (i)
or (ii) are valid. Let us denote by D a (1, 2)-PDS of G. Because of the assumption
that δ(G) ≥ 2, it follows that dG(u1) ≥ 2 and dG(u2) ≥ 2. Hence, there exist vertices
v1, v2 ∈ V (G) such that u1v1 ∈ E(G) and u2v2 ∈ E(G). We have to consider two
possibilities:

1. v1 = u2 and u1 is adjacent only to two vertices x and u2. Hence, N(u1) = {x, u2}.
Assume that N(u2) ̸= {y, u1}, hence there exists at least one vertex v ∈ R adjacent to
u2. From the fact that u2 /∈ S∆(G), it follows that u2 is not adjacent to every vertex
from the set R. Firstly we prove necessary claims.

(5) y /∈ D.
Assume that y ∈ D. Therefore, x /∈ D, otherwise vertices from R are

(1, 1)-dominated. It implies that u2 ∈ D because it is the only vertex such that
dG(x, u2) = 2. But there exists a vertex u∗ ∈ R adjacent to y and u2 simultaneously.
Hence, u∗ is (1, 1)-dominated, a contradiction.

(6) u1 ∈ D.
A vertex u1 is the only vertex in a graph G such that dG(u1, y) = 2. If u1 /∈ D,

then y is not (1, 2)-PD by D, a contradiction.
(7) |R ∩ D| = 0.
Assume that |R ∩ D| ≠ 0. Therefore, a vertex x is (1, 1)-dominated because x is

adjacent to vertices from R and to u1 ∈ D by (6), a contradiction.
(8) u2 /∈ D.
If u2 ∈ D, then x /∈ D otherwise y is (1, 1)-dominated. Because u2 /∈ S∆(G), then

there exists a vertex v∗ ∈ R nonadjacent to u2. So v∗ is not dominated, a contradiction.
From above claims it follows that the only (1, 2)-PDS is a set D1 = {u1, x}.

Analogously we can prove that D2 = {u2, y} is the (1, 2)-PDS if N(u2) = {u1, y} and
u1 is not adjacent to every vertex from R. Hence, condition (ii) is valid.
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2. N(u1) ∩ R ̸= ∅ and N(u2) ∩ R ̸= ∅.
It is obvious that u1 and u2 are adjacent to vertices from the set R. Then D ̸= {x, y},

otherwise u′ ∈ R is (1, 1)-dominated.
(9) D ̸= {x, v} for v ∈ N(x) ∪ {u2} and D ̸= {y, z} for z ∈ N(y) ∪ {u1}.
Assume that D = {x, v} for v ∈ N(x) ∪ {u2}. By connectivity of G and the fact

that x ∈ S∆(G) there exists a vertex v′ ∈ N(x) adjacent to v, so v′ is (1, 1)-dominated.
If v = u2, then by N(u2) ∩ R ̸= ∅ there also exists a vertex v∗ ∈ R adjacent to u2
and x, a contradiction. Analogously we can prove that D ̸= {y, z} for z ∈ N(y) ∪ {u1}.

From above considerations it is obvious that D = {u1, u2}. Vertices x, y are adjacent
and x, y ∈ S∆(G) hence dG(x) = n − 2 and dG(y) = n − 2. It is clear that x, y /∈ D,
otherwise there is a vertex in R which is (1, 1)-dominated. Therefore, D = {u1, u2} is
the only possible a (1, 2)-PDS. Vertices x, y are (1, 2)-PD because x is adjacent to u1
and dG(x, u2) = 2 and y is adjacent to u2 and dG(y, u1) = 2. Moreover, every vertex
u′ ∈ R has to be adjacent either to u1 or u2 and N(u1) ∩ N(u2) = ∅, otherwise there
exists u′′ ∈ R which is (1, 1)-dominated. Thus, the theorem is proved.

CONCLUDING REMARKS

In future considerations, we can study cases when the maximum degrees of vertices
will be n − 3 or when we increase the cardinality of the set S∆(G). Case studies show
that solving these problems will not be immediate.
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