Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Pomiary wielkości rozkładu cząstek wybranych materiałów budowlanych z zastosowaniem metody dyfrakcji laserowej
Języki publikacji
Abstrakty
This article presents the results of experimental research to determine the size of powder graining in building materials, specifically, gypsums (Dolina Nidy, Pinczow) and adhesives (Atlas Sp. z o.o., Lodz, and Weber Saint-Gobain, Warsaw). A modern laser diffraction method for measuring the distribution of particle sizes with respect to their diameters was applied. During the experiment, three series of measurements were conducted for each material. Data relating to the graining of building materials is crucial because it is one of many aspects that directly affects the binding time and defines its potential applications in the construction industry.
W artykule zawarto wyniki badań eksperymentalnych, określających wielkość ziaren w pylistych materiałach budowlanych: gipsach (Dolina Nidy, Pinczów) i klejach (Atlas Sp. z o.o., Łódź oraz Weber Saint-Gobain, Warszawa). W pomiarach zastosowano nowoczesną metodę dyfrakcji laserowej do pomiaru średnic cząstek. Podczas eksperymentu przeprowadzono trzy serie pomiarów dla każdego materiału. Ziarnistość materiałów budowlanych stanowi jeden z wielu aspektów, które bezpośrednio wpływają na czas wiązania, a zatem określają ich użyteczność w budownictwie.
Czasopismo
Rocznik
Tom
Strony
95--108
Opis fizyczny
Bibliogr. 35 poz., wz., tab., wykr., il.
Twórcy
autor
- Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology
autor
- Higher Vocational State School of President Stanislaw Wojciechowski, Polytechnic Faculty
Bibliografia
- [1] Allen T., Particle size measurements, Chapman and Hall, London 1990.
- [2] Ballester P., Mármol I., Morales J., Sánchez L., Use of limestone obtained from waste of the mussel cannery industry from the production of mortars, Cem. Concr. Res., 37/2007, 559–564.
- [3] Bentz D.L., Hansen A.S., Guynn J.M., Optimization of cement and fly ash particle sizes to produce sustainable concretes, Cem. Concr. Compos., 33/2011, 824–831.
- [4] Bock, E., On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25°C, 30°C, 40°C, and 50°C, Can. J. Chem., 39(9)/1961, 1746–1751.
- [5] Burt R. et al., Kellogg soil survey laboratory methods manual, Soil Survey Investigations Report No. 42, Version 5.0., U.S. Department of Agriculture, Natural Resources Conservation Service., Soil Survey Staff (Eds.), 2014.
- [6] Cakal G.O., Eroglu I., Ozkar S., Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch, J. Cryst. Growth, 290(1)/2006, 197–202.
- [7] Chen Q. et al., Particle sizing by the Fraunhofer diffraction method based on an approximate non-negatively constrained Chin-Shifrin algorithm, Powder Technol., 317/2017, 95–103.
- [8] Chindaprasirt P., Jaturapitakkul C., Sinsiri T., Effect of fly ash on compressive strength and pore size of blended cement paste, Cem. Concr. Compos., 25/2005, 425–428.
- [9] Coupland J.N., McClements D.J., Droplet size determination in food emulsions: comparison of ultrasonic and light scattering methods, J. Food Eng., 50/2001, 117–120.
- [10] Derbiszewski B., Herbik M., Prałat K., Zastosowanie laserowego miernika cząstek do pomiaru rozkładu wielkości uziarnienia pyłów, zatrzymanych na filtrach powietrza generatorów prądu, Ciepłownictwo, Ogrzewnictwo, Wentylacja, 48(9)/2017, 380–385.
- [11] Diaz de Mera, Y., Aranda A., Notario A., Rodriguez D., Rodriguez A.M., Bravo I., Adame J.A., Submicron particle concentration and particle size distribution at urban and rural areas in the surroundings of building materials industries in central Spain, Atmos. Pollut. Res., 6(3)/2015, 521–528.
- [12] Dietrich M. et al., Spatial filtering technique as powerful tool for real-time particle size measurement for fluid bed applications in pharmaceutical industry, Sci. Pharm. (Conference abstract LPPT06), 78(3)/2010, 586–586.
- [13] Dongxu L., Jinlin S., Yimin C., Lin C., Xuequan W., Study of properties on fly ash-slag complex cement, Cem. Concr. Res., 30/2000, 1381–1387.
- [14] Frías M., Sánchez de Rojas M.I., Microstructural alterations in fly ash mortars: study on phenomena affecting particle and pore size, Cem. Concr. Res., 27/1997, 619–628.
- [15] Gallias J.L., Kara-Ali R., Bigas J.P., The effect of fine mineral admixtures on water requirement of cement pastes, Cem. Concr. Res., 30/2000, 1543–1549.
- [16] Gee G.W., Orr D., Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Madison, WI, 2002, 255–293.
- [17] Hesse P., Particle size distribution in gypsic soils, Plant Soil., 44/1976, 241–247.
- [18] Hickey A.J., Jones L.D., Particle-size analysis of pharmaceutical aerosols, Pharm. Tech., 24(9)/2000, 48–58.
- [19] ISO 13320-2009 Particle size analysis – Laser diffraction methods.
- [20] Jagodnicka A.K., Stacewicz T., Karasiński G., Posyniak M., Malinowski S.P., Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol, Appl. Opt., 48(4)/2009, 8–16.
- [21] Kanwal R.P., Classical Fredholm Theory. Linear Integral Equations, Springer, New York 2013.
- [22] Lanas J., Pérez Bernal J.L., Bello M.A., Alvarez Galindo J.I., Mechanical properties of natural hydraulic lime-based mortars, Cem. Concr. Res., 34/2004, 2191–2201.
- [23] Li Y. et al., A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste, Cem. Concr. Res., 36/2006, 1740–1743.
- [24] Mostafa N.Y., El-Hemaly S.A.A., Brown P.W., Activity of silica fume and dealuminated kaolin at different temperature, Cem. Concr. Res., 30/2001, 905–911.
- [25] Orr N.A., Spence J., Applications of particle size analysis in the pharmaceutical industry, Analyst, 102/1977, 466–472.
- [26] Porta J., Methodologies for the analysis and characterization of gypsum in soils: a review, Geoderma, 87/1998, 31–46.
- [27] Quan Chen at al., Particle sizing by the Fraunhofer diffraction method based on an approximate non-negatively constrained Chin-Shifrin algorithm, Powder Technol., 317/2017, 95–103.
- [28] Shifrin K.S., Zolotov I.G., Determination of the aerosol particle-size distribution from simultaneous data on spectral attenuation and the small-angle phase function, Appl. Opt., 36/1997, 6047–6056.
- [29] Tasdemir C., Tasdemir M.A., Lydon F.D., Barr B.I.G., Effects of silica fume and aggregate size on the brittleness of concrete, Cem. Concr. Res., 26/1996, 63–68.
- [30] Torrecillas C.M., Halbert G.W., Lamprou D.A., A novel methodology to study polymodal particle size distributions produced during continuous wet granulation, Int. J. Pharm., 519/2017, 230–239.
- [31] Vieillefon, J., Contribution to the improvement of analysis of gypsiferous soils, Cahiers/ORSTOM, Ser. Pedologie, 17/1979, 195–223.
- [32] Wittle K., Müller K., Grüttner C., Westphal F., Johansson C., Particle size and concentration dependent separation of magnetic nanoparticles, J. Magn. Magn. Mater., 427/2017, 320–324.
- [33] Zhang H., Gao, Y., Guo G., Zhao B., Yu J., Effects of ZnO particle size on properties of asphalt and asphalt mixture, Constr. Build. Mater., 159/2018, 578–586.
- [34] Zhang T., Yu Q., Wei J., Zhang P., Chen P., A gap-graded particle size distribution for blended cements: analytical approach and experimental validation, Powder Technol., 214/2011, 259–268.
- [35] Zhang Y., Zhang X., Grey correlation analysis between strength of slag cement and particle fractions of slag powder, Cem. Concr. Compos., 29/2007, 498–504.
Uwagi
EN
Section "Civil Engineering"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfd8041c-dfa4-4457-9c2a-d302c65913e7