PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial Immune Systems in Local and Network Cybersecurity: An Overview of Intrusion Detection Strategies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an overview of artificial immune systems (AIS) used in intrusion detection systems (IDS) is provided, along with a review of recent efforts in this field of cybersecurity. In particular, the focus is on the negative selection algorithm (NSA), a popular, prominent algorithm of the AIS domain based on the human immune system. IDS offer intrusion detection capabilities, both locally and in a network environment. The paper offers a review of recent solutions employing AIS in IDS, capable of detecting anomalous network traffic/breaches and operating system file infections caused by malware. A discussion regarding the reviewed research is presented with an analysis and suggestions for further research, and then the work is concluded.
Rocznik
Strony
1--24
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Faculty of Electronics and Computer Science, Koszalin University of Technology, Poland
Bibliografia
  • 1. P. Helman and S. Forrest, An efficient algorithm for generating random antibody strings, Technical Report CS-94-07, The University of New Mexico, 1994.
  • 2. H. Alrubayyi, G. Goteng, M. Jaber, and J. Kelly, “A Novel Negative and Positive Selection Algorithm to Detect Unknown Malware in the IoT,” IEEE INFOCOM 2021 –IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1 – 6, 2021. doi:10.1109/infocomwkshps51825.2021.9484483.
  • 3. A. S. Perelson and G. F. Oster, “Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-non-self discrimination,”Journal of Theoretical Biology, vol. 81, no. 4, pp. 645 – 670, 1979.doi:10.1016/0022-5193(79)90275-3.
  • 4. S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself discrimination in a computer,” Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202 – 212, 1994. doi:10.1109/risp.1994.296580.
  • 5. S. Hofmeyr, “An Immunological Model of Distributed Detection and Its Application to Computer Security,” doctoral dissertation, University of Witwatersrand, Johannesburg, South Africa, 1999.
  • 6. D. Li, S. Liu, and H. Zhang, “Negative selection algorithm with constant detectors for anomaly detection, ”Applied Soft Computing, vol. 36, pp. 618 – 632, 2015.doi:10.1016/j.asoc.2015.08.011.
  • 7. Z. Ji and D. Dasgupta, “Estimating the detector coverage in a negative selectionalgorithm,” Proceedings of the 2005 conference on Genetic and evolutionary computation– GECCO ’05, pp. 281 – 288, 2005. doi:10.1145/1068009.1068056.
  • 8. S. E. Dixon, “Studies on Real-Valued Negative Selection Algorithms for Self-Nonself Discrimination,” M. Sc. thesis, California Polytechnic State University, San Luis Obispo, USA, 2010.
  • 9. G. Zhao et al., “Voronoi-Based Continuous k Nearest Neighbor Search in Mobile Navigation,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2247 – 2257, 2011 doi:10.1109/tie.2009.2026372.
  • 10. M. Gong, J. Zhang, J. Ma, and L. Jiao, “An efficient negative selection algorithm with further training for anomaly detection,” Knowledge-Based Systems, vol. 30,pp. 185 – 191, 2012. doi:10.1016/j.knosys.2012.01.004.
  • 11. W. Chen, T. Li, X. Liu, and B. Zhang, “A negative selection algorithm based on hierarchical clustering of self set,” Science China Information Sciences, vol. 56,no. 8, pp. 1 – 13, 2011. doi:10.1007/s11432-011-4323-7.
  • 12. X. Gao, S. Ovaska, and X. Wang, “Genetic Algorithms-based Detector Generation in Negative Selection Algorithm,” 2006 IEEE Mountain Workshop on Adaptive and Learning Systems, pp. 133 – 137, 2006. doi:10.1109/smcals.2006.250704.
  • 13. H. Deng and T. Yang, “A negative selection algorithm based on adaptive immunoregulation,” 2020 5th International Conference on Computational Intelligence and Applications (ICCIA), pp. 177 – 182, 2020. doi:10.1109/iccia49625.2020.00041.
  • 14. A. Elahi, Computer Systems: Digital Design, Fundamentals of Computer Architecture and Assembly Language, 1st ed. Cham: Springer, 2018.
  • 15. N. Nisan and S. Schocken, The Elements of Computing Systems: Building a Modern Computer from First Principles, 1st ed. Cambridge, MA: The MIT Press, 2005.
  • 16. L. F. Reese, “Challenges faced today by computer security practitioners,” [1989 Proceedings] Fifth Annual Computer Security Applications Conference, 1989.doi:10.1109/csac.1989.81044.
  • 17. L. Mixia, Y. Dongmei, Z. Qiuyu, and Z. Honglei, “Network Security Risk Assessment and Situation Analysis,” 2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID), 2007. doi:10.1109/iwasid.2007.373676.
  • 18. A. Datta, S. Jha, N. Li, D. Melski, and T. Reps, “Analysis Techniques for Information Security,” Synthesis Lectures on Information Security, Privacy, and Trust, vol. 2, no.1, pp. 1 – 164, 2010. doi:10.2200/s00260ed1v01y201003spt002.
  • 19. C. J. Delona, P. V. Haripriya, and J. S. Anju, “Negative Selection Algorithm: A Survey, ”International Journal of Science, Engineering and Technology Research (IJSETR), vol. 6,no. 4, pp. 711 – 715, 2017.
  • 20. L. Reznik, “Intrusion Detection Systems,” in Intelligent Security Systems: How Artificial Intelligence, Machine Learning and Data Science Work For and Against Computer Security, 1st ed. Hoboken, NJ: Wiley-IEEE Press, 2022, pp. 109 – 176.
  • 21. J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune system, adaptation, and machine learning,” Physica D: Nonlinear Phenomena, vol. 22, no. 1 – 3,pp. 187 – 204, 1986. doi:10.1016/0167-2789(86)90240-x.
  • 22. F. Zhang and Y. Ma, “Integrated Negative Selection Algorithm and Positive Selection Algorithm for malware detection,” 2016 International Conference on Progress in Informatics and Computing (PIC), pp. 605 – 609, 2016. doi:10.1109/pic.2016.7949572.
  • 23. M. Ayara, J. Timmis, R. de Lemos, L. N. de Castro, and R. Duncan, “Negative selection: How to generate detectors,” Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS), pp. 182 – 196, 2002.
  • 24. R. J. De Boer and A. S. Perelson, “How diverse should the immune system be?, ”Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 252,no. 1335, pp. 171 – 175, 1993. doi:10.1098/rspb.1993.0062.
  • 25. L. N. de Castro and F. J. Von Zuben, “Learning and optimization using the clonal selection principle,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 3,pp. 239 – 251, 2002. doi:10.1109/tevc.2002.1011539.
  • 26. F. González, D. Dasgupta, and J. Gómez, “The Effect of Binary Matching Rules in Negative Selection,” Genetic and Evolutionary Computation – GECCO 2003, pp. 195 – 206, 2003. doi:10.1007/3-540-45105-6_25.
  • 27. P. D’haeseleer, S. Forrest, and P. Helman, “An immunological approach to change detection: algorithms, analysis and implications,” Proceedings 1996 IEEE Symposium on Security and Privacy, 1996. doi:10.1109/secpri.1996.502674.
  • 28. F. Gonzalez, D. Dasgupta, and R. Kozma, “Combining negative selection and classification techniques for anomaly detection,” Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), pp. 705 – 710, 2002.doi:10.1109/cec.2002.1007012.
  • 29. Z. Ji, “Negative selection algorithms: From the thymus to V-detector,” PhD dissertation, Department of Computer Science, The University of Memphis, Memphis, Tennessee, USA, 2006.
  • 30. T. Lu, L. Zhang, S. Wang, and Q. Gong, “Ransomware detection based on V-detector negative selection algorithm,” 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 531 – 536, 2017. doi:10.1109/spac.2017.8304335.
  • 31. F. Zhu, W. Chen, H. Yang, T. Li, T. Yang et al., “A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era,” Mathematical Problems in Engineering, vol. 2017, pp. 1 – 7, 2017. doi:10.1155/2017/3956415.
  • 32. F. González, D. Dasgupta, and L. F. Niño, “A Randomized Real-Valued Negative Selection Algorithm,” Lecture Notes in Computer Science, vol. 2787, pp. 261 – 272, 2003 doi:10.1007/978-3-540-45192-1_25.
  • 33. J. Marciniak, K. Wawryn, and P. Widulinski, “An artificial immune negative selectionalgorithm to control water temperature in the outlet of the chamber,” 2018International Conference on Signals and Electronic Systems (ICSES), pp. 236 – 241, 2018 doi:10.1109/ICSES.2018.8507293.
  • 34. P. Saurabh and B. Verma, “A Novel Immunity inspired approach for Anomaly Detection,” International Journal of Computer Applications, vol. 94, no. 15, pp. 14 – 19, 2014 doi:10.5120/16418-6034.
  • 35. J. Balicki, “Negative Selection with Ranking Procedure in Tabu-Based Multi criterion Evolutionary Algorithm for Task Assignment,” Computational Science – ICCS2006, pp. 863 – 870, 2006. doi:10.1007/11758532_112.
  • 36. J. Brown, M. Anwar, and G. Dozier, “Detection of Mobile Malware: An Artificial Immunity Approach,” 2016 IEEE Security and Privacy Workshops (SPW), pp. 74 – 80, 2016 doi:10.1109/spw.2016.32.
  • 37. D. Dasgupta, “Immunity-based Intrusion Detection System: A General Framework, ”Proceedings of 22nd National Information Systems Security Conference, pp. 147 – 160,1999.
  • 38. S. N. S. Fakhari and A. M. E. Moghadam, “NSSAC: Negative selection-based self adaptive classifier,” 2011 International Symposium on Innovations in IntelligentS ystems and Applications, pp. 29 – 33, 2011. doi:10.1109/inista.2011.5946064.
  • 39. C. R. Haag, G. B. Lamont, P. D. Williams, and G. L. Peterson, “An artificial immune system-inspired multi objective evolutionary algorithm with application to the detection of distributed computer network intrusions,” Proceedings of the 2007GECCO conference companion on Genetic and evolutionary computation – GECCO ’07,pp. 420 – 435, 2007. doi:10.1145/1274000.1274035.
  • 40. Z. Ji, D. Dasgupta, “Real-Valued Negative Selection Algorithm with Variable-Sized Detectors,” Genetic and Evolutionary Computation – GECCO 2004, pp. 287 – 298, 2004.doi:10.1007/978-3-540-24854-5_30.
  • 41. P. Kamal and M. Bhusry, “Artificial Bee Colony Optimization based Negative Selection Algorithms to Classify Iris Plant Dataset,” International Journal of Computer Applications, vol. 133, no. 10, pp. 40 – 43, 2016. doi:10.5120/ijca2016908072.
  • 42. L. Nunes de Castro and F. J. Von Zuben, “aiNet: An Artificial Immune Network for Data Analysis,” Data Mining: A Heuristic Approach, pp. 231 – 260, 2002.doi:10.4018/978-1-930708-25-9.ch012.
  • 43. D. J. Prathyusha and G. Kannayaram, “A cognitive mechanism for mitigating DDo Sattacks using the artificial immune system in a cloud environment,” Evolutionary Intelligence, vol. 14, no. 2, pp. 607 – 618, 2020. doi:10.1007/s12065-019-00340-4.
  • 44. S. I. Suliman, M. S. Abd Shukor, M. Kassim, R. Mohamad, and S. Shahbudin,“Network Intrusion Detection System Using Artificial Immune System (AIS),” 20183rd International Conference on Computer and Communication Systems (ICCCS), pp. 178 – 182, 2018. doi:10.1109/CCOMS.2018.8463274.
  • 45. E. D. Alalade, “Intrusion Detection System in Smart Home Network Using Artificial Immune System and Extreme Learning Machine Hybrid Approach,” 2020 IEEE6th World Forum on Internet of Things (WF-IoT), pp. 1 – 2, 2020. doi:10.1109/WF-IoT48130.2020.9221151.
  • 46. J. Brown, M. Anwar and G. Dozier, “Intrusion Detection Using a Multiple-Detector Set Artificial Immune System,” 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 283 – 286, 2016. doi:10.1109/IRI.2016.45.
  • 47. S.-I. T. Tosin and J. R. Gbenga, “Negative selection algorithm based intrusion detection model,” 2020 IEEE 20th Mediterranean Electrotechnical Conference(MELECON), pp. 202 – 206, 2020.
  • 48. P. Widulinski and K. Wawryn, “A human immunity inspired intrusion detection system to search for infections in an operating system,” 2020 27th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 187 – 191, 2020 doi:10.23919/MIXDES49814.2020.9155771.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfd3553c-faf9-4bd7-ae5b-f201443ec407
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.