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Abstract. We consider the existence of at least three positive solutions of a nonlinear first
order problem with a nonlinear nonlocal boundary condition given by

2§ () =r(a(t)+ Y filt,x(t), te0,1],

Az(0) = (1) + Y A7, a(ry)), 7 €10,1],

where r : [0, 1] — [0, c0) is continuous; the nonlocal points satisfy 0 < 71 < 72 < ... < 7, < 1,
the nonlinear function f; and 7; are continuous mappings from [0, 1] x [0, 00) — [0, c0) for
i1=1,2,...,mand j =1,2,...,n respectively, and A > 0 is a positive parameter.
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1. INTRODUCTION

Consider the first order boundary value problem with a nonlinear nonlocal boundary
condition

2 (t) = r(t)z(t) + Zfi(t,x(t)), te 0,1, (1.1)
Az(0) = z(1) + Y Aj(ry,2(r;)), 75 €[0,1], (1.2)
j=1
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where r : [0, 1] — [0, 00) is continuous, f; : [0,1] %[0, 00) — [0, 00), 75 : [0,1] %[0, 00) —
[0,00) are continuous, i = 1,2,...,m and j = 1,2,...,n, the nonlocal points satisfy
0<7m <7 <...<T7, <1, and the scalar \ satisfies

1

A > exp (/r(n)dn). (1.3)
0

The motivation of this present paper has come from a recent paper due to Anderson
[1], who used the Leggett-Williams multiple fixed point theorem [8] to establish three
positive solutions of the boundary value problem (1.1) and (1.2). For completeness,
we state here the statement of the theorem.

Assume that the nonlinear functions A; satisfy

0< $¢j(t7x) < Aj(t’w) < x\I}j(tvx)a te [Oa 1]a x € [0,00) (14)
for some positive continuous functions t;, ¥, : [0, 1] x [0,00) — [0, 00). Set
Bj [0,{?3[%,0] i(t,z) and  q; [0,1I]n><1%,d] ¥;(t, x) (1.5)

for some real constants ¢ and d. Then, using the Leggett-Williams multiple fixed point
theorem, Anderson proved the following theorem.
Theorem 1.1. Suppose that (1.4) holds and the scalar \ satisfies
m 1
A> |1 +Zﬁj exp /r(n)dn > 1. (1.6)
=1 0
Further, suppose that there exist constants 0 < ¢1 < ca < Acg < ¢4 such that

(Fy) filt,z) < Mo fort €[0,1] and x € [0, cu);
(F2) fi(t,x) > % fort €[0,1] and x € [ca, Aca];
(F3) fi(t,x) < % fort € 0,1] and x € [0, ¢1]

fori=1,2,...,m, where
1

, exp ( [ r(n)dn) dim1 ﬂj]

e [1 Y R (17)
G(1,s)ds A —exp (fr(n)dn)
0

Of— =

and

1 t
N =+ [1 - Zf*i d ] (1.8)
J G(0,s)ds A — exp (fr(n)dn)

0 0
Then the boundary value problem (1.1) and (1.2) has at least three positive solutions
1

1
x1, T and 3 satisfying ||x1]| = z1(1) < ¢1, ca < Y(x2) = x2(0), ||zs]| = 23(1) > &1
with Y(x3) = x3(0) < ca.
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We consider a Banach space X = (0, 1] endowed with the sup norm. Define a
cone K on X by

K ={z € X;z > 0 and z increasing}, (1.9)
and a nonnegative concave continuous functional ¢ on K by
Y(z) = min z(t) = z(0), x € K. (1.10)
te(0,1]

Now, we state the main result of this paper.

Theorem 1.2. Assume that (1.3) holds. Suppose that there exist three constants
0< e <o < Aeg <cyq such that .

o s n A—exp( [r(n)dn))c
(Hq) )\Z exp(—/T’(U)d77>fi(s’x(S))ds+ZAj(Tj7$(Tj))S( (f )> :
i=17 | 0 J=1 exp <f T(W)‘M)

0

() Y / exp( / r(n)dn)fxs,x(s))ds+iAj<n,x<m>>c2 (A—exp( / r(n)dn)>
0 0

Jj=1

and 1
m 1L 5 n A—exp ( [r(n)dn)eci
(Hs) )\Z 0/ exp (- 0/ r(n)dn) fi(s,x(s))der;Aj(Tpx(Tj))< - <<ffr(n)dn>>

0

for 7, € [0,1], j = 1,2,...,n and x € [0,ca] hold. Then the boundary
value problem (1.1) and (1.2) has at least three positive solutions x1,x2 and
x3 satisfying ||z1||=21(1) < 1, ca < Y(x2) = 22(0) and ||zs|| = x3(1) > ¢ with

1/}(583) = 1‘3(0) < c4.
We, now show that the conditions of Theorem 1.1 imply the conditions of Theo-

rem 1.2. In fact, (1.6) implies (1.3). First, suppose that (1.4) and (F;) hold, that is,
filt,x) < e for ¢ € [0,1] and z € [0, c4]. Then,

S

m 1 n
)\izlo/exp —O/T(n)dn fi(s,x(s))ds—l—jz:;Aj(Tj,x(Tj))

1 n
/exp —/r(n)dn ds + ¢y Zﬁj
0 0

j=1

<A

m

1

m
MC4

1=

1

S

S)\MC4/eXp f/r(n)dn d5+0425j

0 0 J=1

S

1 n
=c4 )\M/exp f/r(n)dn derZﬁj
0 J=1

0
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Using the value of M, which is given in Theorem 1.1, the above inequality gives

A / exp ( / r(n)dn) ils,a()ds + 37 Ay, a(7,))

i=1 j=1

1

1 s exp ( [r(n)d 2?21 B n
=¢y [/\/exp (—/ r(n)dn) ds L - (1— ’ (0 ! 77) )—i—Z 6]“|

;G(l, s A —exp (;r(n)dn) j=1

= [A/exp (_/Sr(n)dn) . A—exp r(n)dn))
0

)\Oflexp (jr(n)dn)ds

Ct—

exp (f r(n)dn) > B n
().,

J=1

0 0 A—exp r(n)dn | —exp r(n)dn zn:ﬁj) +iﬁ]]
Jexp (jr(n)dn)ds ( <0/ ) <0/ >j—1 j=1
. [Ofexp (gr(n)dzy)ds exp (Of'r(n)dn> <)\exp (lofr(n)dn) _iﬁj) +iﬁj]
bfexp (!r(n)dn)ds exp (Ofr(n)dn> j=1 j=1
A —exp (O}T(n)dn)
exp (Oflr(n)dn) .

which implies that (H;) holds. In a similar way, we can show that if (1.4) and (Fj)
hold, then (Hj3) holds.
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Finally, suppose that (F») holds. In addition, suppose that (1.4) holds. Then for
co < < Aeg, t € [0, 1], using the value of N, given in Theorem 1.1, we obtain

1

m 1 n
> / exp / r(m)dn | fils,2(s)ds + 3 Ay (75, 2(73))
0

=1

1 1 "
=y lNO/eXp S/T(n)dn ds—i—;ozj]
= ¢y 1 X 17" 5 ! — 22;104]' Y a;
R L/e ' s/ e ;G(O,s)ds <1 a — exp (ir(n)dn>> +JZ:; ]

N Hexp <f1 r(n)dn> ds (/\ - exp(j r(n)dn)) (1 ) S ay
A

~exp (J rtnin) )

0

This shows that condition (1.4) and (F») implies condition (Hs). Thus, Theorem 1.2
provides a better condition than the condition given in Theorem 1.1.
Leggett-Williams multiple fixed point theorem has played an important role in
establishing multiple positive periodic solutions of functional differential equations.
For example, one may refer to [2,4-7,9-15] for first order ordinary and delay dif-
ferential equations and refer to [3] for higher order equations. Once the problem is
transformed into an equivalent integral operator, then it becomes easy to study the
existence of fixed points of the operator using the Leggett-Williams multiple fixed
point theorem, which is equivalent to establish the existence of positive solutions of
the concerned problem. In a recent work, Padhi et al. [11], provide some simple way of
applying the Leggett-Williams multiple fixed point theorem to a system of first order
functional differential equations. In this paper, we have applied the same technique,
and obtained Theorem 1.2. The detailed proof of Theorem 1.2 is given in Section 3.
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2. PRELIMINARIES

Let X be a Banach space, K be a cone in X, and ¥ be a nonnegative continuous
functional on K. Further, let a,b,c > 0 be constants. Define

={z e K;|z|| < a}

and
K(,b,c) ={z € K;i(z) > b, [|z]| < c}.

Theorem 2.1 (Leggett-Williams multiple fixed point theorem, [8]). Let X = (X, |-||)
be a Banach space and K C X be a cone, and c4 > 0 be a constant. Suppose that
there exists a concave nonnegative continuous function v on K with ¢ (x) < ||z|| for
v € K., andlet A: K., — K., be a continuous compact map. Assume that there are
numbers c1,co and cs with 0 < ¢ < cg < c3 < ¢4 such that

(1) {.’17 € K(’L/}702703) : w(‘r) > 02} 7é @ and ’(/J(A!E) > C2 fOT’ all x € K(¢7027CS);
(i) ||Az|| < ¢ for all x € K, ;
(iii) Y (Ax) > co for all x € K(3, c2,cq) with ||Ax|| > cs.

Then A has at least three fived points x1,x2 and x3 inzm. Furthermore, we have
1 € Ky, 22 € {x € K(¥,co,cq) : Y(x) > 2}, and x5 € Ko, \ {K (¢, co,ca) UK, }.

3. PROOF OF THEOREM 1.2

Consider an operator A : K — X by

o exp ([ r(m)dn) Sy Ay(ry. ()
:Z/Gtsflsx (s))ds + p(of ’ n) - . (3.1)
=17 A — exp (Ofr(n)dn)

where G(t, s) is the Green’s Kernel, given by

eXp(fr(”)d@ A if0<s<t<l1,
G(t,s) = s x ) (3.2)
r( )) exp([f, r(n)dn) 0<t<s<l.

<~

\

@D

o]

o]
—~
C— =
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The operator A in (3.1) can be rewritten as

fi(s,z(s))ds (3.3)

Let x € K. Then the fact that f;, ¢ =1,2,...,m and A;, j = 1,2,...,n are positive
imply that Az > 0 for all ¢ € [0,1]. We claim that fixed points of the operator A are
the solutions of the boundary value problem (1.1) and (1.2). In fact, if # = Az, then
from (3.3), we have

A exp )ds)

3 ils,a(s))ds
i=1 0/ — exp ( )ds))
0

E;:l Aj(7j,2(75))

()\ — exp <0f7"(77)d77>)
A exp )dn)

- i fi(s,x(s))ds
HO/ —eXp ( )dn))

0

+ A

1
eXp(J T(n)dn) n | -
_ ZA m,2(75), 7 €[0,1],5=1,2,...,n.

(v o)
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Hence, the boundary condition (1.2) is satisfied. Again differentiating (1.9) with re-
spect to t, with Az = x, we obtain

toAr(t exp(ftr )
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which shows that x(t) satisfies (1.1). Moreover,

m

2'(t) = (Az)'(t) = r(t)z(t) + Y filt,2(t)), t€[0,1]

=1

implies that x is increasing and A : K — K. Further, one may verify that A is
completely continuous. We, now show that all conditions of Theorem 2.1 are satisfied.
In order to use Theorem 2.1, we use Ace in place of ¢3. For € K, we have z(0) =

Y(z) < ||z|| = (1), since z € K. Let © € K,,, that is, ||z| < c¢4. Then we obtain,
using (Hy),

|Az|| = Az(1)
exp (;r(n)dn) i1 Ay, 2(75))
(A= exp ([ rmin))

S

[/\io/ Xp (*/T(W)dﬁ)fi(s,il?(«?))ds +Zn:/\j(7ja$(7j))

i= 5 j=1

1
:Z/G(lvs)fi(&l'(S))ds—i—
0

@

that is, A : K., — FCL In a similar way, using (H3), one can prove condition (ii) of
Theorem 2.1, that A : K., — K,,.

In order to verify condition (i) of Theorem 2.1, we choose x(t) = Acg for ¢t € [0, 1].
Since Y (zx(t)) = mingep,1] 7 (t) = Aca > c2; ca < (), ||| = Acz, then the set
{r € K;co < ¢(x),||z]| < Ao} # 0. Let © € K(¥,cz,c3). Then ¢3 < ¢(z) < z <
llz]| = (1) = Acg for ¢ € [0, 1], that is, ca < x(t) < Acg for ¢ € [0, 1] holds. Hence

¥(Az) = Az(0)

> i1 Ay a(7y))

fils,als))ds + 3 T 20)

1

()\ — exp (jr(n)dn)) j=1 (/\ — exp (fr(n)dn))

0

r( d?? fz (s,2(s))ds + > Aj(75,2(7))

Jj=1

Il
—_
l—l
MS
O\H
©]
[
"U
V\H
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holds. Then, using (Hs), the above inequality yields that
w(A'Z') > €2 for z € ’LZ)(K, 02703)3 te [07 1]7

that is, condition (i) of Theorem 2.1 is satisfied.

Finally, suppose that @ € K (v, ca, ¢4) with ||Az|| > Aca. Then

1 [Az]|  Aca
Az)=A > -Az(l)=——F=—=
Y(dz) = Ax(0) 2 3 An(1) = IS = 22 =

implies that condition (iii) of Theorem 2.1 is satisfied. Consequently, the boundary
value problem (1.1) and (1.2) has at least three positive solutions. This completes the
proof of the theorem.
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