PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of anode porosity on the performance of molten carbonate fuel cell

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nickel anodes, for molten carbonate fuel cell (MCFC), of various porosities were fabricated using tape casting and firing processes. The same slurry composition but different sintering temperatures, 700 and 900°C, were used to obtain different anode porosities. Combined experimental and computational techniques were used to study the influence of anode porosity on the performance of molten carbonate fuels cell. The power generated by the 20.25 cm2 class MCFC single cell was experimentally measured at 650°C in humidified hydrogen with respect to the porosity of the anodes. The computational aspect involved the modeling of the microstructure of the sintered porous anodes which included measured size distribution of Ni powder used and porosities of the manufactured materials. For the best performing single cell, the optimal porosity for the nickel MCFC anode was experimentally determined to be 55%. Computations revealed that the specific surface area, which is a determining factor in electrochemical reactions, reaches a maximum at a porosity of 52%.
Rocznik
Strony
228--237
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] J. Brouwer, F. Jabbari, E. M. Leal, T. Orr, Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation, Journal of Power Sources 158 (1) (2006) 213–224. doi:10.1016/j.jpowsour.2005.07.093.
  • [2] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Progress in Natural Science 19 (3) (2009) 291–312. doi:10.1016/j.pnsc.2008.07.014.
  • [3] S. M. M. Ehteshami, S. H. Chan, The role of hydrogen and fuel cells to store renewable energy in the future energy network - potentials and challenges, Energy Policy 73 (2014) 103–109. doi:10.1016/j.enpol.2014.04.046.
  • [4] D. Cao, Y. Sun, G. Wang, Direct carbon fuel cell: Fundamentals and recent developments, Journal of Power Sources 167 (2) (2007) 250–257. doi:10.1016/j.jpowsour.2007.02.034.
  • [5] S. Campanari, P. Chiesa, G. Manzolini, CO2 capture from combined cycles integrated with Molten Carbonate Fuel Cells, International Journal of Greenhouse Gas Control 4 (3) (2010) 441–451. doi:10.1016/j.ijggc.2009.11.007.
  • [6] S. Campanari, P. Chiesa, G. Manzolini, A. Giannotti, F. Federici, P. Bedont, F. Parodi, Application of MCFCs for active CO2 capture within natural gas combined cycles, Energy Procedia 4 (2011) 1235–1242. doi:10.1016/j.egypro.2011.01.179.
  • [7] L. Caprile, B. Passalacqua, A. Torazza, Carbon capture: Energy wasting technologies or the MCFCs challenge?, International Journal of Hydrogen Energy 36 (16) (2011) 10269–10277. doi:10.1016/j.ijhydene.2010.10.028.
  • [8] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable energy applications: Part I. Revisiting molten carbonate properties from a sustainable viewpoint, International Journal of Hydrogen Energy 41 (41) (2016) 18739- 18746. doi:10.1016/j.ijhydene.2015.12.073.
  • [9] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable energy applications: Part II. Review of recent literature, International Journal of Hydrogen Energy 41 (42) (2016) 18971–18994. doi:10.1016/j.ijhydene.2016.08.076.
  • [10] A. L. Dicks, Molten carbonate fuel cells, Current Opinion in Solid State and Materials Science 8 (2004) 379–383. doi:10.1016/j.cossms.2004.12.005.
  • [11] A. Kulkarni, S. Giddey, Materials issues and recent developments in molten carbonate fuel cells, Journal of Solid State Electrochemistry 16 (2012) 3123–3146. doi:10.1007/s10008-012-1771-y.
  • [12] J. Molenda, J. Kupecki, R. Baron, M. Blesznowski, G. Brus, T. Brylewski, M. Bucko, J. Chmielowiec, K. Cwieka, M. Gazda, A. Gil, P. Jasinski, Z. Jaworski, J. Karczewski, M. Kawalec, R. Kluczowski, M. Krauz, F. Krok, B. Lukasik, M. Malys, A. Mazur, A. Mielewczyk-Gryn, J. Milewski, S. Molin, G. Mordarski, M. Mosialek, K. Motylinski, E. Naumovich, P. Nowak, G. Pasciak, P. Pianko-Oprych, D. Pomykalska, M. Rekas, A. Sciazko, K. Swierczek, J. Szmyd, S. Wachowski, T. Wejrzanowski, W. Wrobel, K. Zagorski, W. Zajac, A. Zurawska, Status report on high temperature fuel cells in Poland – recent advances and achievements, International Journal of Hydrogen Energy 42 (7) (2017) 4366–4403. doi:10.1016/j.ijhydene.2016.12.087.
  • [13] J. R. Selman, C. C. Chen, Scientific and technical maturity of molten carbonate technology, International Journal of Hydrogen Energy 37 (24) (2012) 19280–19288. doi:10.1016/j.ijhydene.2012.06.016.
  • [14] K. Czelej, K. Cwieka, K. J. Kurzydlowski, CO2 stability on the Ni lowindex surfaces: Van derWaals corrected DFT analysis, Catalysis Communications 80 (2016) 33–38. doi:10.1016/j.catcom.2016.03.017.
  • [15] K. Czelej, K. Cwieka, T. Wejrzanowski, P. Spiewak, K. J. Kurzydlowski, Decomposition of activated CO2 species on Ni(110): Role of surface diffusion in the reaction mechanism, Catalysis Communications 74 (2016) 65–70. doi:10.1016/j.catcom.2015.10.034.
  • [16] C.-G. Lee, J.-Y. Hwang, S.-Y. Lee, M. Oh, D.-H. Kim, H.-C. Lim, Effect of anode area on the cell performance in a molten carbonate fuel cell, Journal of The Electrochemical Society 155 (2) (2008) 138–143. doi:10.1149/1.2815573.
  • [17] C.-W. Lee, M. Lee, M.-J. Lee, S.-C. Chang, S.-P. Yoon, H. C. Ham, J. Han, Effect of the flow directions on a 100cm2 MCFC single cell with internal flow channels, International Journal of Hydrogen Energy (2016) 1-14. doi:10.1016/j.ijhydene.2016.03.188.
  • [18] M. Cassir, S. J. McPhail, A. Moreno, Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle, International Journal of Hydrogen Energy 37 (24) (2012) 19345–19350. doi:10.1016/j.ijhydene.2011.11.006.
  • [19] D. Marra, Gas distribution inside an MCFC, International Journal of Hydrogen Energy 33 (12) (2008) 3173–3177. doi:10.1016/j.ijhydene.2008.03.005.
  • [20] S. M. C. Ang, E. S. Fraga, N. P. Brandon, N. J. Samsatli, D. J. Brett, Fuel cell systems optimisation - methods and strategies, International Journal of Hydrogen Energy 36 (22) (2011) 14678–14703. doi:10.1016/j.ijhydene.2011.08.053.
  • [21] S. H. Choi, D.-N. Nyeok Park, C. W. Yoon, S.-P. P. Yoon, S. W. Nam, S.-A. A. Hong, Y.-G. G. Shul, H. C. Ham, J. Han, A study on the electrochemical performance of 100-cm2 class direct carbon-molten carbonate fuel cell (DC-MCFC), International Journal of Hydrogen Energy 40 (15) (2015) 5144–5149. doi:10.1016/j.ijhydene.2014.12.112.
  • [22] R. Bove, P. Lunghi, Experimental comparison of MCFC performance using three different biogas types and methane, Journal of Power Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.
  • [23] R. Ciccoli, V. Cigolotti, R. Lo Presti, E. Massi, S. J. McPhail, G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti, F. Zaza, Molten carbonate fuel cells fed with biogas: Combating H2S, Waste Management 30 (6) (2010) 1018–1024. doi:10.1016/j.wasman.2010.02.022.
  • [24] V. Cigolotti, S. McPhail, A. Moreno, S. P. Yoon, J. H. Han, S. W. Nam, T. H. Lim, MCFC fed with biogas: Experimental investigation of sulphur poisoning using impedance spectroscopy, International Journal of Hydrogen Energy 36 (16) (2011) 10311–10318. doi:10.1016/j.ijhydene.2010.09.100.
  • [25] T. Watanabe, Y. Izaki, Y. Mugikura, H. Morita, M. Yoshikawa, M. Kawase, F. Yoshiba, K. Asano, Applicability of molten carbonate fuel cells to various fuels, Journal of Power Sources 160 (2) (2006) 868–871. doi:10.1016/j.jpowsour.2006.06.058.
  • [26] D. Seo, D. Park, S. Yoon, J. Han, I. Oh, Influence of the thin anode geometry on the performance of molten carbonate fuel cells, Transactions of the Korean Hydrogen and New Energy Society 22 (5) (2011) 599–608.
  • [27] T. Wejrzanowski, S. Haj Ibrahim, K. Cwieka, M. Loeffler, J. Milewski, E. Zschech, C.-G. Lee, Multi-modal porous microstructure for high temperature fuel cell application, Journal of Power Sources 373 (2018) 85–94. doi:10.1016/j.jpowsour.2017.11.009.
  • [28] X. Huang, G. Franchi, F. Cai, Characterization of porous bi-modal Ni structures, Journal of Porous Materials 16 (2) (2009) 165–173. doi:10.1007/s10934-007-9181-8.
  • [29] O. Stenzel, O. Pecho, L. Holzer, M. Neumann, V. Schmidt, Predicting effective conductivities based on geometric microstructure characteristics, AIChE Journal 62 (5) (2016) 1834–1843. doi:10.1002/aic.15160.
  • [30] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. R. Prestat, V. Schmidt, Stochastic 3D modeling of La0.6Sr0.4CoO3-_ cathodes based on structural segmentation of FIB-SEM images, Computational Materials Science 67 (2013) 48–62. doi:10.1016/j.commatsci.2012.08.030.
  • [31] G. Gaiselmann, M. Neumann, V. Schmidt, O. Pecho, T. Hocker, L. Holzer, Quantitative relationships between microstructure and effective transport properties based on virtual materials testing, AIChE Journal 60 (6) (2014) 1983–1999. doi:10.1002/aic.14416.
  • [32] M. Neumann, J. Staněk, O. M. Pecho, L. Holzer, V. Beneš, V. Schmidt, Stochastic 3D modeling of complex three-phase microstructures in SOFC-electrodes with completely connected phases, Computational Materials Science 118 (2016) 353–364. doi:10.1016/j.commatsci.2016.03.013.
  • [33] S. Haj Ibrahim, M. Neumann, F. Klingner, V. Schmidt, T. Wejrzanowski, Analysis of the 3D microstructure of tape-cast open-porous materials via a combination of experiments and modeling, Materials & Design 133 (2017) 216–223. doi:10.1016/j.matdes.2017.07.058.
  • [34] R. Bove, P. Lunghi, Experimental comparison of MCFC performance using three different biogas types and methane, Journal of Power Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.
  • [35] S.-G. Hong, J. R. Selman, Wetting characteristics of carbonate melts under MCFC operating conditions, Journal of The Electrochemical Society 151 (1) (2004) 77–84. doi:10.1149/1.1629094.
  • [36] J. Y. Youn, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, S. A. Hong, K. Y. Lee, Fabrication and characteristics of anode as an electrolyte reservoir for molten carbonate fuel cell, Journal of Power Sources 157 (1) (2006) 121–127. doi:10.1016/j.jpowsour.2005.07.068.
  • [37] M. Yoshikawa, A. Bodén, M. Sparr, G. Lindbergh, Experimental determination of effective surface area and conductivities in the porous anode of molten carbonate fuel cell, Journal of Power Sources 158 (1) (2006) 94–102. doi:10.1016/j.jpowsour.2005.09.038.
  • [38] R. Campbell, M. G. Bakker, C. Treiner, J. Chevalet, Electrodeposition of mesoporous nickel onto foamed metals using surfactant and polymer templates, Journal of Porous Materials 11 (2) (2004) 63–69. doi:10.1023/B:JOPO.0000027361.04282.f6.
  • [39] N. P. Brandon, D. J. Brett, Engineering porous materials for fuel cell applications, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 364 (1838) (2006) 147–159. doi:10.1098/rsta.2005.1684.
  • [40] K. Czelej, K. Cwieka, J. C. Colmenares, K. Kurzydłowski, Atomistic insight into the electrode reaction mechanism of cathode in Molten Carbonate Fuel Cell, J. Mater. Chem. A 5 (26) (2017) 13763–13768. doi:10.1039/c7ta02011b.
  • [41] K. Czelej, K. Cwieka, J. C. Colmenares, K. J. Kurzydlowski, Catalytic activity of NiO cathode in molten carbonate fuel cells, Applied Catalysis B: Environmental 222 (2018) 73–75. doi:10.1016/j.apcatb.2017.10.003.
  • [42] R. O’Hayre, D. M. Barnett, F. B. Prinz, The triple phase boundary. a mathematical model and experimental investigations for fuel cells, Journal of The Electrochemical Society 152 (2) (2005) A439–A444. doi:10.1149/1.1851054.
  • [43] S. Zhang, A. M. Gokhale, Computer simulations of topological connectivity of the triple phase boundaries in solid oxide fuel cell composite cathodes, Journal of Power Sources 219 (2012) 172–179. doi:10.1016/j.jpowsour.2012.07.049.
  • [44] V. M. Janardhanan, V. Heuveline, O. Deutschmann, Threephase boundary length in solid-oxide fuel cells: A mathematical model, Journal of Power Sources 178 (1) (2008) 368–372. doi:10.1016/j.jpowsour.2007.11.083.
  • [45] T. Wejrzanowski, J. Gluch, S. H. Ibrahim, K. Cwieka, J. Milewski, E. Zschech, Characterization of spatial distribution of electrolyte in molten carbonate fuel cell cathodes, Advanced Engineering Materials (2018) 1700909.doi:10.1002/adem.201700909.
  • [46] J. R. Selman, Research, development, and demonstration of molten carbonate fuel cell systems, Springer US, Boston, MA, 1993, pp. 345–463.
  • [47] D. Stoyan, A. Wagner, H. Hermann, A. Elsner, Statistical characterization of the pore space of random systems of hard spheres, Journal of Non-Crystalline Solids 357 (6) (2011) 1508–1515. doi:10.1016/j.jnoncrysol.2010.12.033.
  • [48] H. Hermann, A. Elsner, M. Hecker, D. Stoyan, Computer simulated dense-random packing models as approach to the structure of porous low-k dielectrics, Microelectronic Engineering 81 (2-4) (2005) 535–543. doi:10.1016/j.mee.2005.03.058.
  • [49] A. Bezrukov, M. Bargieł, D. Stoyan, Statistical analysis of simulated random packings of spheres, Particle and Particle Systems Characterization 19 (2) (2002) 111–118. doi:10.1002/ppsc.200600974.
  • [50] T. Wejrzanowski, S. H. Ibrahim, J. Skibinski, K. Cwieka, K. J. Kurzydlowski, Appropriate models for simulating open-porous materials, Image Analysis and Stereology 36 (2) (2017) 107–112. doi:10.5566/ias.1649.
  • [51] T. Wejrzanowski, S. H. Ibrahim, K. Cwieka, J. Milewski, K. J. Kurzydlowski, Design of open-porous materials for high-temperature fuel cells, Journal of Power Technologies 96 (3) (2016) 178–182.
  • [52] T. Wejrzanowski, J. Skibinski, J. Szumbarski, K. J. Kurzydlowski, Structure of foams modeled by Laguerre-Voronoi tessellations, Computational Materials Science 67 (2013) 216–221. doi:10.1016/j.commatsci.2012.08.046.
  • [53] H. Viet, P. Nguyen, M. Roslee, D. Seo, S. Pil, H. Chul, S. Woo, J. Han, J. Kim, Nano Ni layered anode for enhanced MCFC performance at reduced operating temperature, International Journal of Hydrogen Energy 39 (23) (2014) 12285–12290. doi:10.1016/j.ijhydene.2014.03.253.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfc83d16-26e0-4689-9f4d-2522486d5de1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.