PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of fuzzy programming techniques to solve solid transportation problem with additional constraints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An innovative, real-life solid transportation problem is explained in a non-linear form. As in real life, the total transportation cost depends on the procurement process or type of the items and the distance of transportation. Besides, an impurity constraint is considered here. The proposed model is formed with fuzzy imprecise nature. Such an interesting model is optimised through two different fuzzy programming techniques and fractional programming methods, using LINGO-14.0 tools followed by the generalized gradient method. Finally, the model is discussed concerning these two different methods.
Rocznik
Strony
67--84
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Department of Mathematics, Midnapore College (Autonomous), Midnapore, West Bengal-721101, India
  • Department of Computer Science, Vidyasagar University, Midnapore, West Bengal-721102, India
Bibliografia
  • [1] BIT A.K., BISWAL M.P., ALAM S.S., Fuzzy programming approach to multi-objective solid transportation problem, Fuzzy Sets Syst., 1993, 57, 183–194.
  • [2] BIT A.K., BISWAL M.P., ALAM S.S., An additive fuzzy programming model for multi objective transportation problem, Fuzzy Sets Syst., 1993, 57, 313–319.
  • [3] BISWAL M.P., VERMA R., Fuzzy programming technique to solve a non-linear transportation problem, Fuzzy Math., 1999, 7, 723–730.
  • [4] LIN C.-J., WEN U.-P., A labeling algorithm for the fuzzy assignment problem, Fuzzy Sets Syst., 2004, 142, 373–391.
  • [5] DUTTA D., MURTHY SATYANARAYANA A., Fuzzy transportation problem with additional restriction, ARPN J. Eng. Appl. Sci., 2010, 5 (2), 36–40.
  • [6] JIMENEZ F., VERDEGAY J.L., Uncertain solid transportation problems, Fuzzy Sets Syst., 1998, 100, 45–57.
  • [7] KANTI SWARUP, Linear fractional functional programming, Oper. Res., 1965, 12, 1029–1036.
  • [8] SINGH P., SAXENA P.K., The multiobjective time transportation problem with additional restrictions, Eur. J. Oper. Res., 2003, 146, 460–476.
  • [9] BELLMAN R.R., ZADEH L.A., Decision making in a fuzzy environment, Manage. Sci., 1970, B17, 203–218.
  • [10] ZADEH L.A., Fuzzy sets, Inf. Contr., 1965, 8, 338–353.
  • [11] ZIMMERMANN H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst., 1978, 1, 45–55.
  • [12] HITCHCOCK F.L., The distribution of a product from several sources to numerous localities, Studies in Appl. Math., 1941, 20 (1–4), 224–230.
  • [13] APPA G.M., The Transportation problem and its variants, Oper. Res. Quart., 1973, 24 (1), 79–99.
  • [14] ANUKOKILA P., RADHAKRISHNAN B., ANJU A., Goal programming approach for solving multi-objective fractional transportation problem with fuzzy parameters, RAIRO Oper. Res., 2019, 53 (1), 157–178.
  • [15] KUMAR P.S., PSK method for solving mixed and type-4 intuitionistic fuzzy solid transportation problems, International J. Oper. Res. Inf. Syst., 2019, 10 (2), 20–53.
  • [16] KUMAR P.S., PSK method for solving intuitionistic fuzzy solid transportation problems, Int. J. Fuzzy Syst. Appl., 2018, 7 (4), 62–99.
  • [17] KUMAR P.S., A note on a new approach for solving intuitionistic fuzzy transportation problem of type-2, Int. J. Log. Syst. Manage., 2018, 29 (1), 102–129.
  • [18] KUMAR P.S., HUSSAIN R.J., A systematic approach for solving mixed intuitionistic fuzzy transportation problems, Int. J. Pure Appl. Math., 2014, 92 (2), 181–190.
  • [19] KUMAR P.S., Intuitionistic fuzzy solid assignment problems: a software-based approach, Int. J. Syst. Assur. Eng. Manage., 2018, 10 (4), 661–675.
  • [20] KUMAR P.S., A simple method for solving type-2 and type-4 fuzzy transportation problems, Int. J. Fuzzy Logic Intel. Syst., 2016, 16 (4), 225–237.
  • [21] LIANG T.F., Interactive multi-objective transportation planning decisions using fuzzy, linear programming, Asia-Pacific J. Oper. Res., 2008, 25 (1), 11–31.
  • [22] VERMA R., BISWAL M.P., BISWAS A., Fuzzy programming technique to solve multi objective transportation problems with some non-linear membership functions, Fuzzy Sets Syst., 1997, 91, 37–43.
  • [23] LI L., LAI K.K., A fuzzy approach to the multi-objective transportation problem, Comp. Oper. Res., 2000, 27, 43–57.
  • [24] SHELL E., Distribution of a product by several properties, Directorate of Management Analysis, Proc. Second Symposium in Linear Programming, 1955, 2, 615–642.
  • [25] RAMAKRISHNAN C.S., An improvement to Goyal’s modified VAM for the unbalanced transportation problem, J. Oper. Res. Soc., 1988, 39 (6), 609–610.
  • [26] SHAFAAT A., GOYAL S.K., Resolution of degeneracy in transportation problems, J. Oper. Res. Soc., 1988, 39 (4), 411–413.
  • [27] ARSHAM H., KAHN A.B., A simplex-type algorithm for general transportation problems. An alternative to stepping-stone, J. Oper Res. Soc., 1989, 40 (6), 581–590.
  • [28] GASS S.I., On solving the transportation problem, J. Oper. Res. Soc., 1990, 41 (4), 291–307.
  • [29] ADLAKHA V., KOWALSKI K., A simple heuristic for solving small fixed-charge transportation problems, Omega, 2003, 31 (3), 205–211.
  • [30] BARR R.S., GLOVER F., KLINGMAN D., A new optimization method for large scale fixed charge transportation problems, Oper. Res., 1981, 29 (3), 448–463.
  • [31] HALEY K.B., New methods in mathematical programming – the solid transportation problem, Oper. Res., 1962, 10 (4), 448–463.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfc79121-a053-4d5f-ac88-444741d5846f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.