PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A deep learning based approach for classification of abdominal organs using ultrasound images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasound imaging is one of the primary modalities used for diagnosing a multitude of medical conditions affecting organs and soft tissues the body. Unlike X-rays, which use ionizing radiation, ultrasound imaging utilizes non-hazardous acoustic waves and is widely preferred by doctors. However, ultrasound imaging sometimes requires substantial manual effort in the identification of organs during real-time scanning. Also, it is a challenging task if the scanning performed by an unskilled clinician does not comprise adequate information about the organ, leading to an incorrect diagnosis and thereby fatal consequences. Hence, the automated organ classification in such scenarios can offer potential benefits. In this paper, We propose a convolutional neural network-based architecture (CNNs), precisely, a transfer learning approach using ResNet, VGG, GoogleNet, and Inception models for accurate classification of abdominal organs namely kidney, liver, pancreas, spleen, and urinary bladder. The performance of the proposed framework is analyzed using in-house developed dataset comprising of 1906 ultrasound images. Performance analysis shows that the proposed framework achieves a classification accuracy and F1 score of 98.77% and 98.55%, respectively, on an average. Also, we provide the performance of the proposed architecture in comparison with the state-of-the-art studies.
Twórcy
  • WiNet Research Lab, Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
  • WiNet Research Lab, Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
autor
  • Department of Radiology, Asian Institute of Gastroenterology, Hyderabad, India
Bibliografia
  • [1] Tang KJW, Ang CKE, Constantinides T, Rajinikanth V, Acharya UR, Cheong KH. Artificial intelligence and machine learning in emergency medicine. Biocybern Biomed Eng 2021;41 (1):156–72. https://doi.org/10.1016/j.bbe.2020.12.002.
  • [2] Shokoohi H, LeSaux MA, Roohani YH, Liteplo A, Huang C, Blaivas M. Enhanced point-of-care ultrasound applications by integrating automated feature-learning systems using deep learning. J Ultrasound Med 2019;38(7):1887–97. https:// doi.org/10.1002/jum.14860.
  • [3] Tomizawa M, Shinozaki F, Hasegawa R, Shirai Y, Motoyoshi Y, Sugiyama T, et al. Abdominal ultrasonography for patients with abdominal pain as a first-line diagnostic imaging modality. Experim Therapeut Med 2017;13(5):1932–6.
  • [4] V. Tiwari, P.P. Bansod, A. Kumar, Compressed medical image transmission in telemedicine architecture, in: Proceedings of International Conference on Recent Advancement on Computer and Communication, Springer, 2018, pp. 205–212.
  • [5] Mircea PA, Badea R, Fodor D, Buzoianu AD. Using ultrasonography as a teaching support tool in undergraduate medical education-time to reach a decision. Med Ultrasonogr 2012;14(3):211–6.
  • [6] Reddy DS, Bharath R, Rajalakshmi P. A novel computer-aided diagnosis framework using deep learning for classification of fatty liver disease in ultrasound imaging. In: 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom). p. 1–5. https://doi.org/ 10.1109/HealthCom.2018.8531118.
  • [7] Xu Z, Huo Y, Park J, Landman B, Milkowski A, Grbic S, et al. Less is more: Simultaneous view classification and landmark detection for abdominal ultrasound images. In: International conference on medical image computing and computerassisted intervention, Springer. p. 711–9.
  • [8] Cheng PM, Malhi HS. Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J Digit Imag 2017;30(2):234–43. https://doi.org/ 10.1007/s10278-016-9929-2.
  • [9] Mahajan A, Chaudhary S. Categorical image classification based on representational deep network (resnet). 3rd International conference on electronics communication and aerospace technology (ICECA) 2019;2019:327–30. https://doi. org/10.1109/ICECA.2019.8822133.
  • [10] Xu SS-D, Chang C-C, Su C-T, Phu PQ. Classification of liver diseases based on ultrasound image texture features. Appl Sci 2019;9(2):342. https://doi.org/10.3390/app9020342.
  • [11] Maruyama H, Kato N. Advances in ultrasound diagnosis in chronic liver diseases. Clin Mol Hepatol 2019;25(2):160–7. https://doi.org/10.3350/cmh.2018.1013.
  • [12] Aggarwal K, Bhamrah MS, Ryait HS. Detection of cirrhosis through ultrasound imaging by intensity difference technique. EURASIP J Image Video Process 2019;2019(1):80. https://doi.org/10.1186/s13640-019-0482-z.
  • [13] Bharath R, Mishra PK, Rajalakshmi P. Automated quantification of ultrasonic fatty liver texture based on curvelet transform and svd. Biocybern Biomed Eng 2018;38 (1):145–57. https://doi.org/10.1016/j.bbe.2017.12.004.
  • [14] Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, et al. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm. Comput Meth Progr Biomed 2016;130:118–34. https://doi.org/10.1016/j.cmpb.2016.03.016.
  • [15] Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and mr elastography for assessing liver fibrosis: part 2, diagnostic performance, confounders, and future directions. Am J Roentgenol 2015;205(1):33–40. https://doi. org/10.2214/AJR.15.14553.
  • [16] Nahlawi L, Imani F, Gaed M, Gomez JA, Moussa M, Gibson E, et al. Using hidden markov models to capture temporal aspects of ultrasound data in prostate cancer. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), IEEE. p. 446–9. https://doi.org/10.1109/ BIBM.2015.7359725.
  • [17] Meshram N, Varghese T, Mitchell C, Jackson D, Wilbrand S, Hermann B, et al. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition. Phys Med Biol 2017;62(15):6341–60.
  • [18] Andersen CA, Holden S, Vela J, Rathleff MS, Jensen MB. Pointof-care ultrasound in general practice: a systematic review. Ann Family Med 2019;17(1):61–9. https://doi.org/10.1370/ afm.2330.
  • [19] Obuchowicz R, Kruszyn´ ska J, Strzelecki M. Classifying median nerves in carpal tunnel syndrome: Ultrasound image analysis. Biocybern Biomed Eng 2021;41(2):335–51. https:// doi.org/10.1016/j.bbe.2021.02.011.
  • [20] Cho J, Jensen TP, Reierson K, Mathews BK, Bhagra A, FrancoSadud R, et al. Recommendations on the use of ultrasound guidance for adult abdominal paracentesis: a position statement of the society of hospital medicine. J Hosp Med 2019;14:E7–E15. https://doi.org/10.12788/jhm.3095.
  • [21] Blank V, Wiegand J, Keim V, Karlas T. Evaluation of a novel tomographic ultrasound device for abdominal examinations. PloS one 2019;14(6). https://doi.org/10.1371/journal. Pone.0218754.
  • [22] Zhang Z, Hong Y, Liu N, Chen Y. Diagnostic accuracy of contrast enhanced ultrasound in patients with blunt abdominal trauma presenting to the emergency department: a systematic review and meta-analysis. Sci Rep 2017;7(1):1–8. https://doi.org/10.1038/s41598-017-04779-2.
  • [23] Dandan L, Huanhuan M, Yu J, Yi S. A multi-model organ segmentation method based on abdominal ultrasound image. In: 2020 15th IEEE international conference on signal processing (ICSP), vol. 1; 2020. p. 505–10. doi:10.1109/ ICSP48669.2020.9320910.
  • [24] Zhou Y, Wang Y, Tang P, Bai S, Shen W, Fishman E, et al. Semisupervised 3d abdominal multi-organ segmentation via deep multi-planar co-training. In: IEEE winter conference on applications of computer vision (WACV). p. 121–40. https:// doi.org/10.1109/WACV.2019.00020.
  • [25] Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, et al. Automatic multi-organ segmentation on abdominal ct with dense v-networks. IEEE Trans Med Imag 2018;37(8):1822–34. https://doi.org/10.1109/ TMI.2018.2806309.
  • [26] Larsson M, Zhang Y, Kahl F. Robust abdominal organ segmentation using regional convolutional neural networks. Appl Soft Comput 2018;70:465–71.
  • [27] Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3d ct images for anatomical structure segmentation based on an fcn voting method. Med Phys 2017;44(10):5221–33.
  • [28] Ma, J, Zhang Y, Gu S, Zhang Y, Zhu C, Wang Q, et al., Abdomenct-1k: Is abdominal organ segmentation a solved problem?, arXiv preprint arXiv:2010.14808 (2020).
  • [29] Bobo MF, Bao S, Huo Y, Yao Y, Virostko J, Plassard AJ, et al. Fully convolutional neural networks improve abdominal organ segmentation. Medical imaging 2018: Image processing, vol. 10574. International Society for Optics and Photonics; 2018. p. 105742V. https://doi.org/10.1117/ 12.2293751.
  • [30] Yusuf GT, Sellars ME, Deganello A, Cosgrove DO, Sidhu PS. Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. Am J Roentgenol 2017;208(2):446–52.
  • [31] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision 2015;115(3):211–52. https://doi.org/10.1007/ s11263-015-0816-y.
  • [32] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM 2017;60(6):84–90. https://doi.org/10.1145/3065386.
  • [33] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).
  • [34] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D. Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), IEEE. p. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.
  • [35] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recosgnition (CVPR), IEEE. p. 2818–26. https://doi.org/10.1109/ CVPR.2016.308.
  • [36] Reddy ASB, Juliet DS. Transfer learning with resnet-50 for malaria cell-image classification. In: 2019 International conference on communication and signal processing (ICCSP), IEEE. p. 0945–9. https://doi.org/10.1109/ICCSP.2019.8697909.
  • [37] Xu X, Zhou F, Liu B, Fu D, Bai X. Efficient multiple organ localization in ct image using 3d region proposal network. IEEE Trans Med Imag 2019;38(8):1885–98. https://doi.org/ 10.1109/TMI.2019.2894854.
  • [38] Khan SA, Yong S-P. An evaluation of convolutional neural nets for medical image anatomy classification. In: Advances in Machine Learning and Signal Processing, vol. 387, Springer; 2016. p. 293–303. doi:10.1007/978-3-319-32213-1_26.
  • [39] Mahajan A, Chaudhary S. Categorical image classification based on representational deep network (resnet). In: 2019 3rd International conference on Electronics Communication and Aerospace Technology (ICECA). p. 327–30. https://doi.org/ 10.1109/ICECA.2019.8822133.
  • [40] Rezende E, Ruppert G, Carvalho T, Ramos F, De Geus P. Malicious software classification using transfer learning of resnet-50 deep neural network. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA), IEEE. p. 1011–4. https://doi.org/10.1109/ ICMLA.2017.00-19.
  • [41] Endah SN, Widodo AP, Fariq ML, Nadianada SI, Maulana F. Beyond back-propagation learning for diabetic detection: Convergence comparison of gradient descent, momentum and adaptive learning rate. In: 2017 1st international conference on informatics and computational sciences (ICICoS). p. 189–94. https://doi.org/10.1109/ ICICOS.2017.8276360.
  • [42] Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw 1999;12(1):145–51. https://doi.org/ 10.1016/S0893-6080(98)00116-6.
  • [43] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), IEEE. p. 770–8. https://doi.org/ 10.1109/CVPR.2016.90.
  • [44] Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, et al. Efficient multi-atlas abdominal segmentation on clinically acquired ct with simple context learning. Med Image Anal 2015;24(1):18–27. https://doi.org/10.1016/ j.media.2015.05.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfbe964f-df69-416c-a0ed-1b43018125ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.