PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Analysis of Thermomechanical States in Multipass Arc Weld Surfaced Steel Elements

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the analysis of temperature fields, phase transformations, strains and stresses in a cuboidal element made from S235 steel, surfaced with multipass GMA (Gas Metal Arc) method. The temperature field is described assuming a dual-distribution heat source model and summing up the temperature fields induced by the padded weld and by the electric arc. Dependence of stresses on strains is assumed on the basis of tensile curves of particular structures, taking into account the influence of temperature. The calculations were carried out on the example of five welds in the middle of the plate made of S235 steel. The simulation results are illustrated in graphs of thermal cycles, volume shares of structural components and stresses at the selected points of cross-section, and the temperature and strain distributions in the whole cross section.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 21 Armii Krajowej Str., 42-201 Częstochowa, Poland
Bibliografia
  • [1] L. E. Lindgren, H. Runnemalm, M. O. Näsström, Simulation of multipass welding of a thick plate, Int. J. Num. Meth. Eng. 44, 1301-1316 (1999).
  • [2] W. Jiang, K. Yahiaoui, F. R. Hall, T. Laoui, Finite element simulation of multipass welding: full three-dimensional versus genera lized plane strain or axisymmetric models, J. Strain Analysis 40, 587-597 (2005).
  • [3] D. Deng, H. Murakawa, Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects, Comput. Mater. Sci. 37, 209-219 (2006).
  • [4] W. Jiang, Z. Liu, J. M. Gong, S. T. Tu, Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds stainless steel clad plate, Mater. Des. 32, 2851-2857 (2011).
  • [5] C. Heinze, C. Schwenk, M. Rethmeier, Numerical calculation of residual stress development of multi-pass gas metal arc welding under high restraint conditions. Mater. Des. 35, 201-209 (2012).
  • [6] S. Joshi, J. Hildebrand, A. S. Aloraier, T. Rabczuk, Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate, Comp. Mater. Sci. 69, 559-565 (2013).
  • [7] L. Börjesson, L. E. Lindgren, Simulation of multipass welding with simultaneous computation of material properties, Trans. ASME 123, 106-111 (2001).
  • [8] L. E . Lindgren, E. Hedblom, Modelling of addition of filler material in large deformation analysis of multipass welding, Commun. Numer. Meth. En. 17, 647-657 (2001).
  • [9] A. Kulawik, Modeling of thermomechanical phenomena of welding process of steel pipe, Arch. Metal. Mater. 57, 1229-1238 (2012).
  • [10] J. Winczek, Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source, Int. J. Heat Mass Transfer 53, 5774-5781 (2010).
  • [11] J. Winczek, New approach to modeling of temperature field in surfaced steel elements, Int. J. Heat Mass Transfer 54, 4702-4709 (2011).
  • [12] J. Winczek, Modelling of temperature field and phase transformations in weld rebuilding elements. Informatics in Materials Technology 2 (4), 121-137 (2004).
  • [13] W. Piekarska, M. Kubiak, A. Bokota, Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joint, Arch. Metal. Mater. 56, 409-421 (2011).
  • [14] J. Winczek, Modeling of heat affected zone in multipass GMAW surfacing S235 steel element, Proc. Eng. 136, 108-113 (2016).
  • [15] M. Avrami, M., Kinetics of phase change. I. General theory, J. Chem. Physics 7, 1103-1112 (1939).
  • [16] R. Parkitny, J. Winczek, Modelling of phase transformations during multipass surfacing, In:. Conf. Proc. XXXVIII Sympozjon Modelling in Mechanics, Silesian University of Technology, Gliwice 219-224 (1999).
  • [17] T. Domański, A. Bokota, Numerical models of hardening phenomena of tools steel base on the TTT and CCT diagrams, Archiv. Metal.Mater. 56, 325-344 (2011).
  • [18] J. Winczek, K. Makles, M. Gucwa, R. Gnatowska, M. Hatala, Modelling of strains during SAW surfacing taking into heat of the weld in temperature field description and phase transformations, IOP Conf. Series: Materials Science and Engineering 225 (2017) 012038 doi:10.1088/1757-899X/225/1/012038 (2017).
  • [19] J. Winczek, The analysis of stress states in steel rods surfaced by welding, Arch. Metal. Mater. 58, 1243-1252 (2013).
  • [20] J. Brózda, J. Pilarczyk, M. Zeman, TTT-welding diagrams transformation of austenite, Śląsk, Katowice 1983.
  • [21] J. Winczek, A. Kulawik, Dilatometric and hardness analysis of C45 steel tempering with different heating-up rates, Metalurgija 51 (1), 9-12 (2012).
  • [22] J. Gawąd, D. Szeliga, A. Bator, V. Pidvysockyy, M. Pietrzyk, Interpretation of the tensile test results interpretation based on two criterion optimization, In: Proc. 14. Conf. KomPlasTech, Informatics in Metal Technology, ed. M. Pietrzyk et al., Akapit, Cracow, 27-34 (2004).
  • [23] P. M. M. Vila Real, R. Cazeli, L. Simoes da Silva, A. Santiago, P. Piloto, The effect of residual stresses in the lateral-torsional buckling of steel I-beams at elevated temperature, J. Constr. Steel Res. 60, 783-793 (2004).
  • [24] M. Melander, A Computional and Experimental Investigation of Induction and Laser Hardening, Linkoping Studies in Science and Technology, Dissertation No 124, Linkoping Univeristy (1985).
  • [25] J. Lian, Z. Jiang, J. Liu, Theoretical model for the tensile work hardening behaviour of dual-phase steel, Mater. Sci. Eng. A147, 55-65 (1991).
  • [26] S. K. Kim, Y. M. Kim, Y. J. Lim, N. J. Kim N. J., Relationship between yield ratio and the material constants of the swift equation, Metals Materials Int. 12, (2 ), 131-135 (2006).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfbb7795-a5be-4353-a722-02efb150da45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.