PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the structure of Aβ(1-40) amyloid with the one in complex with polyphenol ε-viniferin glucoside (EVG)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of amyloid structures is much easier recently due to the availability of the solid-state nuclear magnetic resonance technique, which allows the determination of the 3D structure of amyloid forms. The amyloidogenic polypeptide Aβ(1-40) (PDB ID 2M9R, 2M9S) in its soluble form is the object of analysis in this paper. The solubility of this polypeptide is reached due to the presence of a complexed ligand: polyphenol ε-viniferin glucoside. Two forms of complexes available in the PDB were taken for analysis with respect to the presence of a hydrophobic core in the 3D structure of these complexes. The idealized hydrophobic core structure assumed to be accordant with the 3D Gauss function distribution was taken as the pattern. The aim of this analysis is the possible further comparison to the structures of the hydrophobic core present in amyloids. It is shown that the discordant (versus the 3D Gauss function) fragments present in amyloids appear accordant in the discussed complexes.
Słowa kluczowe
Rocznik
Strony
art. no. 20180008
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Jagiellonian University Medical College, 31-034 Krakow, Poland
autor
  • Jagiellonian University Medical College, 31-034 Krakow, Poland
  • Jagiellonian University Medical College, 31-034 Krakow, Poland
autor
  • Jagiellonian University Medical College, 31-034 Krakow, Poland
autor
  • Jagiellonian University Medical College, Łazarza 16, 31-034 Krakow, Poland
Bibliografia
  • [1] Taubes G. Misfolding the way to disease. Science 1996;271:1493-5.
  • [2] Horwich AL, Weissman JS. Deadly conformations - protein misfolding in prion disease. Cell 1997;89:499-510.
  • [3] Baum J, Brodsky B. Folding of peptide models of collagen and misfolding in disease. Curr Opin Struct Biol 1999;9:122-8.
  • [4] Dobson CM, Ellis RJ. Protein folding and misfolding inside and outside the cell. EMBO J 1998;17:5251-4.
  • [5] Baldwin RL. The nature of protein folding pathways: the classical versus the new view. J Biomol NMR 1995;5:103-9.
  • [6] Jaenicke R. Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond B Biol Sci 1995;348:97-105.
  • [7] Di Fede G, Catania M, Maderna E, Ghidoni R, Benussi L, Tonoli E, et al. Molecular subtypes of Alzheimer’s disease. Sci Rep 2018;8:3269.
  • [8] Carbonell F, Iturria-Medina Y, Evans AC. Mathematical modeling of protein misfolding mechanisms in neurological diseases: a historical overview. Front Neurol 2018;9:37.
  • [9] Tao YX, Conn PM. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol Rev 2018;98:697-725.
  • [10] Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, et al. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: mechanisms, contributors, and therapy. Biochim Biophys Acta 2018;18. pii: S0005-2736(18)30054-3.
  • [11] Fändrich M, Nyström S, Nilsson KP, Böckmann A, LeVine H 3rd, Hammarström P. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J Intern Med 2018;283:218-37.
  • [12] Roterman I, Banach M, Konieczny L. Propagation of fibrillar structural forms in proteins stopped by naturally occurring short polypeptide chain fragments. Pharmaceuticals (Basel) 2017;10. pii: E89.
  • [13] Roterman I, Banach M, Konieczny L. Towards the design of anti-amyloid short peptide helices Bioinformation 2018;14:001-7.
  • [14] Ribarič S. Peptides as potential therapeutics for Alzheimer’s disease. Molecules. 2018;23. article id: E283.
  • [15] Richard T, Papastamoulis Y, Waffo-Teguo P, Monti JP. 3D NMR structure of a complex between the amyloid β peptide (1-40) and the polyphenolε-viniferin glucoside: implications in Alzheimer’s disease. Biochim Biophys Acta 2013;1830:5068-74.
  • [16] Konieczny L, Brylinski M, Roterman I. Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 2006;6:15-22.
  • [17] Kalinowska B, Banach M, Konieczny L, Roterman I. Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 2015;17:1477-507.
  • [18] Roterman I, Banach M, Kalinowska B, Konieczny L. Influence of the aqueous environment on protein structure - a plausible hypothesis concerning the mechanism of amyloidogenesis. Entropy 2016;18:351.
  • [19] Roterman I, Banach M, Konieczny L. Application of the fuzzy oil drop model describes amyloid as a ribbonlike micelle. Entropy 2017;19:167.
  • [20] Levitt MA. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 1974;104:59-107.
  • [21] Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat 1951;22:79-86.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfb7a97e-b1a2-49dc-b12b-894d6c833f11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.