PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of electrical and thermal parameters of vertical-cavity surface-emitting lasers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental methods are presented for determining the thermal resistance of vertical-cavity surface-emitting lasers (VCSELs) and the lateral electrical conductivity of their p-type semiconductor layers. A VCSEL structure was manufactured from III-As compounds on a gallium arsenide substrate. Conductivity was determined using transmission line measurement (TLM). Electrical and thermal parameters were determined for various ambient temperatures. The results could be used for computer analysis of VCSELs.
Słowa kluczowe
Rocznik
Strony
519--529
Opis fizyczny
Bibliogr. 20 poz., rys., wykr., wzory
Twórcy
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
  • Vigo Photonics S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
  • Vigo Photonics S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Vigo Photonics S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
  • [1] Iga, K. (2008). Vertical-cavity surface-emitting laser: Its conception and evolution. Japanese Journal of Applied Physics, 47(1R), 1. https://doi.org/10.1143/JJAP.47.1
  • [2] Koyama, F. (2006). Recent advances of VCSEL photonics. Journal of Lightwave Technology, 24(12), 4502-4513. https://doi.org/10.1109/JLT.2006.886064
  • [3] Li, X., Liu, C., Wang, Z., Xie, X., Li, D., & Xu, L. (2020). Airborne LiDAR: state-of-the-art of system design, technology and application. Measurement Science and Technology, 32(3), 032002. https://doi.org/10.1088/1361-6501/abc867
  • [4] Dobosz, M. (2012). Laser diode distance measuring interferometer-metrological properties. Metrology and Measurement Systems, 19(3), 553-564. https://doi.org/10.2478/v10178-012-0048-1
  • [5] Chen, B., Claus, D., Russ, D., & Nizami, M. R. (2020). Generation of a high-resolution 3D-printed freeform collimator for VCSEL-based 3D-depth sensing. Optics Letters, 45(19), 5583-5586. https://doi.org/10.1364/OL.401160
  • [6] Gębski, M., Wong, P. S., Riaziat, M., & Lott, J. A. (2020). 30 GHz bandwidth temperature stable 980 nm VCSELs with AlAs/GaAs bottom DBRs for optical data communication. J. Phys. Photonics, 2(3), 035008. https://doi.org/10.1088/2515-7647/ab9420
  • [7] Okur, S., Scheller, M., Seurin, J. F., Miglo, A., Xu, G., Guo, D., ... & Ghosh, C. (2019, March). High-power VCSEL arrays with customized beam divergence for 3D-sensing applications. In Vertical-Cavity Surface-Emitting Lasers XXIII (Vol. 10938, pp. 61-67). SPIE. https://doi.org/10.1117/12.2508485
  • [8] Fujioka, I., Ho, Z., Gu, X., & Koyama, F. (2020, May). Solid state LiDAR with sensing distance of over 40m using a VCSEL beam scanner. In CLEO: Science and Innovations (pp. SM2M-4). Optical Society of America. https://doi.org/10.1364/CLEO_SI.2020.SM2M.4
  • [9] Reeves, G. K., & Harrison, H. B. (1982). Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Letters, 3(5), 111-113. https://doi.org/10.1109/EDL.1982.25502
  • [10] Baca, A. G., Ren, F., Zolper, J. C., Briggs, R. D., & Pearton, S. J. (1997). A survey of ohmic contacts to III-V compound semiconductors. Thin Solid Films, 308, 599-606. https://doi.org/10.1016/S0040-6090(97)00439-2
  • [11] Lyu, Y. T., Jaw, K. L., Lee, C. T., Tsai, C. D., Lin, Y. J., & Cherng, Y. T. (2000). Ohmic performance comparison for Ti/Ni/Au and Ti/Pt/Au on InAs/graded InGaAs/GaAs layers. Materials Chemistry and Physics, 63(2), 122-126. https://doi.org/10.1016/S0254-0584(99)00208-4
  • [12] Daubenschüz, M., & Michalzik, R. (2016, April). Parameter extraction from temperature-dependent light-current-voltage data of vertical-cavity surface-emitting lasers. In Semiconductor Lasers and Laser Dynamics VII (Vol. 9892, pp. 115-122). SPIE. https://doi.org/10.1117/12.2228080
  • [13] Flick, T., Becks, K. H., Dopke, J., Mättig, P., & Tepel, P. (2011). Measurement of the thermal resistance of VCSEL devices. Journal of Instrumentation, 6(01), C01021. https://doi.org/10.1088/1748-0221/6/01/C01021
  • [14] Gębski, M., Śpiewak, P., Kołkowski, W., Pasternak, I., Głowadzka, W., Nakwaski, W., ... & Strupiński, W. (2021). First vertical-cavity surface-emitting laser made entirely in Poland. Bulletin of the Polish Academy of Sciences: Technical Sciences, e137272–e137272. https://doi.org/10.24425/bpasts.2021.137272
  • [15] Gary Tuttle, “Contact resistance and TLM measurements” Dept. of Electrical and Computer Engineering, Iowa State University. https://gtuttle.net/fabrication/topics/tlm_measurements.pdf
  • [16] Schroder, D. K. (2015). Semiconductor Material and Device Characterization. John Wiley & Sons, Ch. 1 Resistivity, pp. 138-143.
  • [17] Katz, A., Abernathy, C. R., & Pearton, S. J. (1990). Pt/Ti ohmic contacts to ultrahigh carbon-doped p-GaAs formed by rapid thermal processing. Applied Physics Letters, 56(11), 1028-1030. https://doi.org/10.1063/1.102605
  • [18] Mimura, M., & Miyamoto, T. (2018). Thermal conductivity reduction effect of thin layer on thermal resistance of vertical cavity surface emitting lasers. Japanese Journal of Applied Physics, 57(8S2), 08PD02. https://doi.org/10.7567/JJAP.57.08PD02
  • [19] Al-Omari, A. N., Carey, G. P., Hallstein, S., Watson, J. P., Dang, G., & Lear, K. L. (2006). Low thermal resistance high-speed top-emitting 980-nm VCSELs. IEEE Photonics Technology Letters, 18(11), 1225-1227. https://doi.org/10.1109/LPT.2006.875059
  • [20] Liao, W. Y., Li, J., Li, C. C., Guo, X. F., Guo, W. T., Liu, W. H., ... & Tan, M. Q. (2020). Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure. Chinese Physics B, 29(2), 024201. https://doi.org/10.1088/1674-1056/ab5fbd
Uwagi
1. The authors would like to thank the National Centre for Research and Development for supporting research and development of VCSELs technology within the MAZOWSZE/0032/19-00 grant.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfb22a6d-9c15-4efb-a9e2-16d827b2cce0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.