PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Epigenetic silicification of the Upper Oxfordian limestones in the Sokole Hills (Kraków-Częstochowa Upland): relationship to facies development and tectonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A spectacular epigenetic silicification was encountered in the Oxfordian bedded limestones exposed in the Sokole Hills situated in the Kraków-Częstochowa Upland. The main epigenetic mineral is microcrystalline quartz accompanied by minor goethite, hematite, barite, galena and sphalerite. Locally, the mineralized limestones reveal Pb and Cu contents exceeding over 150 times the background values of these metals in unmineralized limestones. The epigenetic mineralization of the bedded limestones was probably a two-stage process. During the first, Early Cretaceous stage, silicified limestones formed at the erosional surface of a denuded carbonate complex. Such silicification greatly limited the progress of the first karstification phase of the Upper Jurassic carbonates initiated in the Hauterivian. The sources of silica accumulated in the limestones were descending solutions enriched in silica derived from the weathering zone. This silicification affected the topmost part of the Upper Jurassic massive limestones and the deeper portions of the bedded limestones along the fracture systems and stylolites. Early Cretaceous tectonic activity generated new dislocations and re-opened the existing faults, which were subsequently filled with permeable Albian quartz sands. These openings became the migration pathways for ascending, warm, relict, sulphide-carrying hydrothermal solutions at the second formation stage of the epigenetic mineralization. The newly supplied silica from the Albian sands precipitated on the silicified limestones and, as concentric rims, on brecciated, early diagenetic cherts. The second-stage mineralization proceeded under phreatic conditions, presumably close to a fluctuating mixing zone of ascending, warm hydrothermal solutions and descending cold groundwaters. The brecciated cherts acting as silica crystallization nuclei indicate that the last mineralization stage probably followed the final phase of Cenozoic faulting.
Rocznik
Strony
181--203
Opis fizyczny
Bibliogr. 114 poz., fot., rys.
Twórcy
  • AGH University of Science and Technology; Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków
autor
  • AGH University of Science and Technology; Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków
autor
  • AGH University of Science and Technology; Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków
  • AGH University of Science and Technology; Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków
autor
  • AGH University of Science and Technology; Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków
autor
  • University of Silesia in Katowice, Faculty of Earth Sciences, ul. Będzińska 60; 41-200 Sosnowiec, Poland
  • Departamento de Geografía Física, Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, 04510 Mexico, DF, Mexico
autor
  • University of Silesia in Katowice, Faculty of Earth Sciences, ul. Będzińska 60; 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Alexandrowicz, S.W. 1960. Geological structure of the vicinity of Tyniec. Biuletyn Instytutu Geologicznego, 152, 5–93. [In Polish with English summary]
  • 2. Andre, B.J. and Rajaram, H. 2005. Dissolution of limestones fractures by cooling waters: Early development of hypogene karst systems. Water Resources Research, 41, W01015 JAN 22 2005.
  • 3. Aranburu, A., Fernández-Mendiola, P.A., López-Horgue, M.A. and Garcia-Mordéjar, J. 2002. Syntectonic hydrothermal calcite in a faulted carbonate platform margin (Albian of Jorrios, northern Spain). Sedimentology, 49, 875–890.
  • 4. Azmon, E. and Kedar, Y. 1985. Lower cretaceous silcrete-ferricrete at the Northern end of the African Tethys Shoreline, Maktesh Gadol, Israel. Sedimentary Geology, 43, 261–276.
  • 5. Barski, M. 2012. Dinoflagellate cysts from neptunian dykes in the Middle Jurassic of Poland – a stratigraphical approach. Review of Palaeobotany and Palynology, 169, 38–47.
  • 6. Barski, M. and Ostrowski S. 2006. Jurassic neptunian dykes. In: A. Wierzbowski, R. Aubrecht, J. Golonka, J. Gutowski, M. Krobicki, B.A. Matyja, G. Pieńkowski and A. Uchman (Eds), Jurassic of Poland and adjacent Slovakian Carpathians, Field trip guidebook of 7th International Congress on the Jurassic System, pp. 156–157. Warszawa.
  • 7. Bednarek, J., Górecka, E. and Zapaśnik, T. 1985. Tectonically controlled development of ore mineralization in Jurassic sequence of the Silesian-Cracow Monocline. Rocznik Polskiego Towarzystwa Geologicznego, 53, 43–62. [In Polish with English summary]
  • 8. Braithwaite, C.J.R. 1989. Stylolites as open fluid conduits. Marine and Petroleum Geology, 6, 93–96.
  • 9. Bruhn, R.L., Parry, W.T., Yonkee, W.A. and Thompson, T. 1994. Fracturing and hydrothermal alteration in normal fault zones. Pure and Applied Geophysics, 142, 609–644.
  • 10. Bukowy, S. 1960. Notes on sedimentation and diagenesis of the Albian in Cracow region. Biuletyn Instytutu Geologicznego, 152, 243–276. [In Polish with English summary]
  • 11. Buła, Z. 2000. The lower palaeozoic of Upper Silesia and West Małopolska. Prace Państwowego Instytutu Geologicznego , 171, 1–89. [In Polish]
  • 12. Buła, Z. 2002. Geological Atlas of the Palaeozoic without the Permian in the border zone of the Upper Silesian and Małopolska Blocks. Explanatory text, pp. 1–28. Państwowy Instytut Geologiczny; Warszawa. [In Polish]
  • 13. Buła, Z., Jachowicz, M. and Żaba, J. 1997. Principal char acteristics of the Upper Silesian Block and Małopolska Block border zone. Geological Magazine, 134, 669–677.
  • 14. Bustillo, M.A., Delgado, A., Rey, J. and Ruiz-Ortiz, P.A. 1998. Meteoric water participation in the genesis of Jurassic cherts in the Subbetic of southern Spain – a significant indicator of penecontemporaneous emergence. Sedimentary Geology, 119, 85–102.
  • 15. Bustillo, M.A., Plet, C. and Alonso-Zarza, A.M. 2013. Root calcretes and uranium-bearing silcretes at sedimentary discontinuities in the Miocene of the Madrid basin (Toledo, Spain). Journal of Sedimentary Research, 83, 1130–1146.
  • 16. Caine, J.S., Evans, J.P. and Forster, C.B. 1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028.
  • 17. Coimbra, R. Immenhauser, A. and Olóriz, F. 2014. Spatial geochemistry of Upper Jurassic carbonates (Iberian subplate). Earth-Science Reviews, 139, 1–32.
  • 18. Cornell, R.M. and Schwertmann, U. 2003. The iron oxides. Structure, properties, reactions, occurrence and uses, pp. 1–703. Wiley-VCH; Weinheim.
  • 19. Czerniakowski, L.A., Lohmann, K.C., Wilson, J.L. 1984. Closed-system marine burial diagenesis: isotopic data from the Austin Chalk and its components. Sedimentology, 31, 863–877.
  • 20. Dadlez, R., Kowalczewski, Z. and Znosko, J. 1994. Some key problems of the pre-Permian tectonics of Poland. Geological Quarterly, 38, 169–190.
  • 21. Dixon, J.C. and McLaren, S.J. 2009. Duricrusts. In: A.J. Pearson and A.D. Abrahams (Eds), Geomorphology of desert environment, 123–152. Longman.
  • 22. Dżułyński, S. 1952. The origin of the Upper Jurassic limestones in the Cracow area. Rocznik Polskiego Towarzystwa Geologicznego, 21, 125–180. [In Polish with English summary]
  • 23. Dżułyński, S. and Żabiński, W. 1954. Dark limestones in the Cracovian Jurassic sediments. Acta Geologica Polonica, 4, 182–198. [In Polish with English summary]
  • 24. Fanton, K.C., Holmden, C.E., Nowlan, G.S. and Haidl, F.M. 2002. 143Nd/144Nd and Sm/Nd stratigraphy of Upper Ordovician epeiric sea carbonates. Geochimica et Cosmochimica Acta, 66, 241–255.
  • 25. Franke, D. and Hoffmann, N. 1999. Das Elbe-Lineament-bedeutende Geofraktur oder Phantomgeblide? Teil 2, Regionale Zusammenhänge. Zeitschrift für Geologische Wissenschaften, 27, 319–350.
  • 26. Gaillard, C. 1983. Les biohermes à spongiaires et leur environment dans l’Oxfordian du Jura méridional. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, 90, 1–515.
  • 27. Garisson, R.E. 1981. Diagenesis of oceanic carbonate sediments: a review of the DSDP perspective. In: R.E. Warme, R.G. Douglas and E.L. Winterer (Eds), The Deep Sea Drilling Project: A Decade of Progress. Special Publication of Society of Economic Paleontologists and Mineralogists, 32, 181–207.
  • 28. Głazek, J. 1989. Paleokarts of Poland, In: D.C. Ford, J. Głazek and I. Horáček (Eds), Paleokarts a systematic and regional review, pp. 77–105. Akademia; Prague.
  • 29. Głazek, J., Pacholewski, A. and Rożkowski, A. 1992. Karst aquifer of the Cracow-Wieluń Upland, Poland. In: W. Back, J.S. Herman and H. Paloc (Eds), Hydrogeology of selected karst regions. International Contributions to Hydrogeology, 13, 289–306.
  • 30. Gołębiowska, B., Pieczka, A., Rzepa, G., Matyszkiewicz, J. and Krajewski, M. 2010. Iodargyrite from Zalas (Cracow area, Poland) as an indicator of Oligocene-Miocene aridity in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 130–137.
  • 31. Górecka, E. and Zapaśnik, T. 1981. Epigenetic dolomites in Upper Jurassic rocks in the Silesian-Cracow Monocline. Przegląd Geologiczny, 10, 529–532. [In Polish]
  • 32. Gradziński, M., Motyka, J. and Górny, A. 2009. Artesian origin of a cave developed in an isolated horst: A case study of Smocza Jama (Kraków Upland, Poland). Annales Societatis Geologorum Poloniae, 79, 159–168.
  • 33. Gradziński, M., Hercman, H., Kicińska, D., Pura, D. and Urban, J. 2011. Ascending speleogenesis of Sokola Hill: a step towards a speleogenetic model of the Polish Jura. Acta Geologica Polonica, 61, 341–365.
  • 34. Gradziński, R. 1977. Sedimentation of “moulding sands” on karstified limestone surface in the middle part of Kraków Wieluń Upland. Kras i Speleologia, 1, 59–70. [In Polish with English summary]
  • 35. Gwinner, M.P. 1971. Carbonate rocks of the Upper Jurassic in SW-Germany. In: G. Müller (Ed.), Sedimentology of parts of Central Europe, pp. 193–207. Kramer; Frankfurt.
  • 36. Heliasz, Z. 1980. Limestones silicification in the Julianka area, near Częstochowa. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 383, Geologia, 92–101. [In Polish with English summary]
  • 37. Heliasz, Z., Ptak, B., Więckowski, R. and Zieliński, T. 1982. Detailed geological map of Poland, 1:50 000, sheet Janów (846). Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 38. Heliasz, Z., Ptak, B., Więckowski, R. and Zieliński, T. 1987. Explanation to detailed geological map of Poland sheet Janów (846) 1:50000, pp. 1–66. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 39. Jacobsen, S.B. and Wasserburg, G.J. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50, 139–155.
  • 40. James, V., Canerot, J., Meyer, A. Biteau, J.J. 2000. Growth and destruction of Bathonian silica nodules in the Western Pyrenees (France). Sedimentary Geology, 132, 5–23.
  • 41. Jones, C.E. and Jenkyns, H.C. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112–149.
  • 42. Keupp, H., Koch, R. and Leinfelder, R.R. 1990. Steuerungsprozesse der Entwicklung von Oberjura-Spongiolthen Süddeutschland: Kenntnisstand, Probleme und Perspektiven. Facies, 23, 141–174.
  • 43. Klimchouk, A. 2007. Hypogene Speleogenesis. Hydrogeological and Morphogenetic Perspective, pp. 1–106. National Cave and Karst Institute; Carlsbad.
  • 44. Klimchouk, A. 2009. Morphogenesis of hypogenic caves. Geomorphology, 106, 100–117.
  • 45. Knauth, L.P. 1979. A model for the origin of chert in limestone. Geology, 7, 274–277.
  • 46. Knauth, L.P. and Epstein, S. 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochimica Acta, 40, 1095–1108.
  • 47. Kochman, A. and Matyszkiewicz, J. 2012. Microbial laminites with coprolites from Upper Jurassic carbonate buildups complex (Kraków-Częstochowa Upland; Poland). Annales Societatis Geologorum Poloniae, 82, 331–347
  • 48. Kochman, A. and Matyszkiewicz, J. 2013. Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland. Acta Geologica Polonica, 63, 681–696.
  • 49. Kolodny, Y., Tarablous, A. and Frieslander, U. 1980. Participation of fresh water in chert diagenesis-evidence from stable isotopes and boron a-track mapping. Sedimentology, 27, 305–316.
  • 50. Kuźniar, W. and Żelechowski W. 1927. Materiały do poznania stosunku Karpat do ich przedgórza na przestrzeni do Morawskiej Ostrawy po Kraków. Przegląd Górniczo-Hutniczy, 19, 327–334, 355–360, 393–402, 434–444, 465–471. [In Polish]
  • 51. Lawrence, M.J.F. 1994. Conceptual model for early diagenetic chert and dolomite, Amuri Limestone Group, north-eastern South Island, New Zeland. Sedimentology, 41, 479–478.
  • 52. Leinfelder, R.R. 1993. Upper Jurassic reef types and controlling factors. Profil, 5, 1–45.
  • 53. Leinfelder, R.R. 1996. Distribution of Jurassic reef types: a mirror of structural and environmental changes during breakup of Pangea. Canadian Society of Petroleum Geologists, Memoir, 17, 677–700.
  • 54. Leinfelder, R.R., Krautter, M., Laternser, R., Nose, M., Schmid, D.U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J.H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G. and Luterbacher, H. 1994. The origin of Jurassic reefs: current research developments and results. Facies, 31, 1–56.
  • 55. Łaptaś, A. 1974. The dolomites in the Upper Jurassic limestones in the area of Cracow. Rocznik Polskiego Towarzystwa Geologicznego, 34, 247–273. [In Polish with English summary]
  • 56. Madsen, H.B., Stemmerik, L. and Sulryk, F. 2010. Diagenesis of silica-rich mound-bedded chalk, the Coniacian Arnager Limestone, Denmark. Sedimentary Geology, 223, 51–60.
  • 57. Maldonado, M., Carmona, C., Velasquez, Z., Puig, A., Cruzada, A., Lopez, A. and Young, C.M. 2005. Siliceous sponges as a silicon sink: an overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnology and Oceanography, 50, 799–809.
  • 58. Marcinowski, R. 1970a. The Cretaceous transgressive deposits east of Częstochowa (Polish Jura Chain). Acta Geologica Polonica, 20, 413–449.
  • 59. Marcinowski, R. 1970b. Turbidites in the Upper Oxfordian limestones at Jaskrów in the Polish Jura Chain. Bulletin of the Polish Academy of Sciences, Earth Sciences, 18, 219–225.
  • 60. Marcinowski, R. 1974. The transgressive Cretaceous (Upper Albian through Turonian) deposits of the Polish Jura Chain. Acta Geologica Polonica, 24, 117–217.
  • 61. Matyja, B.A. and Wierzbowski, A. 1992. Olsztyn, cyanobacteria-sponge biohermal complex; Oxfordian, Bifurcatus and Bimammatum zones. In: Oxfordian & Kimmeridgian joint working group meeting. International Subcommission on Jurassic Stratigraphy, pp. 35–37. Warszawa.
  • 62. Matyja, B.A. and Wierzbowski, A. 1996. Sea-bottom relief and bathymetry of Late Jurassic sponge facies in Central Poland. GeoResearch Forum, 1-2, 333–340.
  • 63. Matyja, B.A. and Wierzbowski, A. 2006a. Open shelf facies of the Polish Jura Chain. In: A. Wierzbowski, R. Aubrecht, J. Golonka, J. Gutowski, M. Krobicki, B.A. Matyja, G. Pieńkowski and A. Uchman (Eds), Jurassic of Poland and adjacent Slovakian Carpathians, Field trip guidebook of 7th International Congress on the Jurassic System, pp. 198–199. Warszawa.
  • 64. Matyja, B.A. and Wierzbowski, A. 2006b. Olsztyn, cyanobacteria-sponge biohermal complex; Upper Oxfordian (Bifurcatus and Bimmamatum zones). In: A. Wierzbowski, R. Aubrecht, J. Golonka, J. Gutowski, M. Krobicki, B.A. Matyja, G. Pieńkowski and A. Uchman (Eds), Jurassic of Poland and adjacent Slovakian Carpathians, Field trip guidebook of 7th International Congress on the Jurassic System, pp. 199–201. Warszawa.
  • 65. Matyszkiewicz, J. 1987. Epigenetic silification of the Upper Oxfordian limestones in the vicinity of Kraków. Annales Societatis Geologorum Poloniae, 57, 59–87. [In Polish with English summary]
  • 66. Matyszkiewicz, J. 1989. Sedimentation and diagenesis of the Upper Oxfordian cyanobacterial-sponge limestones in Piekary near Kraków. Annales Societatis Geologorum Poloniae, 59, 201–232.
  • 67. Matyszkiewicz, J. 1994. Remarks on the deposition of pseudonodular limestones in the Cracow area (Oxfordian, Southern Poland). Berliner Geowissenschaftliche Abhandlungen, E13, 419–439.
  • 68. Matyszkiewicz, J. 1999. Sea-bottom relief versus differential compaction in ancient platform carbonates: a critical reassessment of an example from Upper Jurassic of the Cracow-Wieluń Upland. Annales Societatis Geologorum Poloniae, 69, 63–79.
  • 69. Matyszkiewicz, J., Krajewski, M. and Żaba, J. 2006a. Structural control on the distribution of Upper Jurassic carbonate buildups in the Kraków-Wieluń Upland (South Poland). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 3, 182–192.
  • 70. Matyszkiewicz, J., Krajewski, M. and Kędzierski, J. 2006b. Origin and evolution of an Upper Jurassic complex of carbonate buildups from Zegarowe Rocks (Kraków-Wieluń Upland, Poland). Facies, 52, 249–263.
  • 71. Matyszkiewicz, J., Kochman, A. and Duś, A. 2012. Influence of local sedimentary conditions on development of microbialites in the Oxfordian carbonate buildups from the southern part of the Kraków-Częstochowa Upland (south Poland). Sedimentary Geology, 263–264, 109–132.
  • 72. Migaszewski, Z.M., Gałuszka, A., Durakiewicz, T. and Starnawska, E. 2006. Middle Oxfordian – Lower Kimmeridgian chert nodules in the Holy Cross Mountains, southcentral Poland. Sedimentary Geology, 187, 11–28.
  • 73. Milnes, A.R. and Thiry, M. 1992. Silcretes. In: Martini, I.P., Chesworth, W. (Eds), Weathering, soils and palaeosols, pp. 349–377. Elsevier; Amsterdam.
  • 74. Mišik, M. 1996. Silica spherulites and fossil silcretes in carbonate rocks of the Western Carpathians. Geologica Carpathica, 47, 91–105.
  • 75. Morawska, A. 1997. The Lubliniec Fracture Zone: boundary of the Upper Silesia and Malopolska Massifs, southern Poland. Annales Societatis Geologorum Poloniae, 67, 429–437.
  • 76. Morozewicz, J. 1909. O haczetynie i jego Bonarskim złożu. Kosmos, 34, 610–624.
  • 77. Murata, K.J. and Norman, M.B. 1976. An index of crystallinity for quartz. American Journal of Science, 276, 1120–1130.
  • 78. Nash, D.J. and Ullyott, J.S. 2007. Silcrete. In: D.J. Nash and S.J. McLaren (Eds), Geochemical sediments and landscapes, pp. 95–143. Blackwell; Oxford,
  • 79. Nash, D.J., Shaw, P.A. and Ullyott, J.S. 1998. Drainage-line silcretes of the Middle Kalahari: an analogue for Cenozoic sarsen trains? Proceedings of the Geologists’ Association, 109, 241–254.
  • 80. Neuweiler, F., Daoust, I., Bourque P.-A. and Burdige, D.J. 2007. Degradative calcification of a modern siliceous sponge from the Great Bahama Bank, the Bahamas: a guide for interpretation of ancient sponge-bearing limestones. Journal of Sedimentary Research, 77, 552–563.
  • 81. Ni, S., Ju, Y., Hou, Q., Wang, S., Liu, Q., Wu, Y. and Ziao, L. 2009. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering. Progress in Natural Science, 19, 1133–1139.
  • 82. Palmer, A.N. 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, 103, 1–21.
  • 83. Pin, C., Briot, D., Bassin, C. and Poitrasson, F. 1994. Concomitant separation of strontium and samariumneodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta, 298, 209–217.
  • 84. Pouchou, J.L. and Pichoir, F. 1985. “PAP” (φ-ρ-Z) procedure for improved quantitative microanalysis. In: J.T. Armstrong (Ed.), Microbeam Analysis, pp. 104–106. San Francisco Press; San Francisco,
  • 85. Pucéat, E., Lécuyer, C. and Reisberg, L. 2005. Neodymium isotopic evolution of the Western Tethyan seawater throughout the Cretaceous. Earth and Planetary Science Letters, 236, 705–720.
  • 86. Pulina, M., Żaba, J. and Polonius, A. 2005. Relation between karst forms of Smoleń-Niegowonice Range and tectonic activity of Cracow-Wieluń Upland. Kras i Speleologia, 11, 39–85. [In Polish with English summary]
  • 87. Rajchel, J. 1970. Badania sedymentologiczne krzemieni jurajskich pod Krakowem. Sprawozdania z Posiedzeń Komisji Oddziału Polskiej Akademii Nauk w Krakowie, 14, 625–645. [In Polish]
  • 88. Ribeiro, C. and Terrinha, P. 2007. Formation, deformation and chertification of systematic clastic dykes in a differentially lithified carbonate multilayer. SW Iberia, Algarve Basin, Lower Jurassic. Sedimentary Geology, 196, 201–215.
  • 89. Riding, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58, 163–231.
  • 90. Rongemaille, E., Bayon, G., Pierre, C., Bollinger, C., Chu, N.C., Fouquet, Y., Riboulot, V. and Voisset, M. 2011. Rare earth elements in cold seep carbonates from the Niger delta. Chemical Geology, 286, 196–206.
  • 91. Różycki, S.Z. 1937. Alb, cenoman i turon w okolicy stacji Złoty Potok (koło Koniecpola). Sprawozdania Państwowego Instytutu Geo1ogicznego, 9, 19–57. [With German summary]
  • 92. Rühle, E., Ciuk, E., Osika, R. and Znosko, J. 1977. Geological Map of Poland without Quaternary deposits, scale 1 : 500 000. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 93. Scheinost, A.C. and Schwertmann, U. 1999. Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Science Society of America Journal, 63, 1463–1471.
  • 94. Schlanger, S.O. and Douglas, R.G. 1974. The pelagic oozechalk-limestone transition and its implications for marine stratigraphy. In: K.J. Hsü and H.C. Jenkyns (Eds), Pelagic Sediments. Special Publication of the International Association of Sedimentologists, 1, 117–148.
  • 95. Shaw, P.A. and Nash, D.J. 1998. Dual mechanisms for the formation of fluvial silcretes in the distal reaches of the Okavango Delta Fan, Botswana. Earth Surface Processes and Landforms, 23, 705–714.
  • 96. Sibson, R.H. 1987. Earthquake rupturing as a hydrothermal mineralizing agent. Geology, 15, 701–704.
  • 97. Sowers, G.M. 1972. Theory of spacing of extension fractures. In: H. Pincus (Ed.), Geological factors in rapid excavagation. Bulletin of the Geological Society of America, Engeneering Geology case history, 9, 27–53.
  • 98. Stille, P. and Fisher, H. 1990. Secular variation in the isotopic composition of Nd in Tethys seawater. Geochimica and Cosmochimica Acta, 54, 3139–3145.
  • 99. Stille, P., Clauer, N. and Abrecht, J. 1989. Nd isotopic composition of Jurassic Tethys seawater and the genesis of Alpine Mn-deposits: Evidence from Sr-Nd isotope data. Geochimica and Cosmochimica Acta, 53, 1095–1099.
  • 100. Stille, P., Steinmann, M. and Riggs, S.R. 1996. Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth and Planetary Science Letters, 144, 9–19.
  • 101. Thiry, M. 1997. Continental silicification: a review. In: H. Paquet and N. Clauer (Eds), Soils and sediments: mineralogy and geochemistry, pp. 191–221. Springer; Berlin.
  • 102. Thiry, M. 1999. Diversity of continental silicification features: examples from the Cenozoic deposits in the Paris Basin and neighbouring basement. In: M. Thiry and R. Simon-Coinçon (Eds), Palaeoweathering, Palaeosurfaces and Related Continental Deposits, International Association of Sedimentologists, Special Publication, 27, 87–127.
  • 103. Thiry, M., Bertrand-Ayrault, M. and Grisoni, J.C. 1988. Ground-water silicification and leaching in sands: example of the Fontainebleau Sand (Oligocene) in the Paris Basin. Bulletin of the Geological Society of America, 100, 1283–1290.
  • 104. Thiry, M. and Milnes, A.R. 1991. Pedogenic and groundwater silcretes at Stuart Creek opal field, South Australia. Journal of Sedimentary Petrology, 61, 111–127.
  • 105. Thiry, M. and Simon-Coinçon, R. 1996. Tertiary palaeoweatherings and silcretes in the southern Paris Basin. Catena, 26, 1–26.
  • 106. Tofalo, O.R. and Pazos, P.J. 2010. Paleoclimatic implications (Late Cretaceous-Paleogene) from micromorphology of calcretes, palustrine limestones and silcretes, southern Parana Basin, Uruguay. Journal of South American Earth Sciences, 29, 665–675.
  • 107. Trammer, J. 1982. Lower to Middle Oxfordian sponges of the Polish Jura. Acta Geologica Polonica, 32, 1–39.
  • 108. Tyc, A. 2009. Hypogenic ascending speleogenesis in the Kraków-Częstochowa Upland (Poland) – Evidence in cave morphology and surface relief. In: A. Klimchouk and D. Ford (Eds), Hypogene Speleogenesis and karst Hydrology of Artesian basin. Special Paper, 1, 201–208.
  • 109. Ullyott, J.S. and Nash, D.J. 2006. Micromorphology and geochemistry of groundwater silcretes in the eastern South Downs, UK. Sedimentology, 53, 387–412.
  • 110. Urban, J. and Gradziński, M. 2004. Traditions and perspec tives of protection of “Sokole Góry” nature reserve. In: J. Partyka (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Przyroda, pp. 89–95. Ojców. [In Polish with English summary]
  • 111. Wójcik, Z. 2004. On the history of calcareous spar mining in Małopolska Upland. In: J. Partyka (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Kultura, pp. 345–350. Ojców. [In Polish with English summary]
  • 112. Żaba, J. 1999. The structural evolution of Lower Palaeozoic succession in the Upper Silesia Block and Małopolska Block border zone, southern Poland. Prace Państwowego Instytutu Geologicznego, 166, 1–162. [In Polish with English summary]
  • 113. Żaba, J. and Tyc A. 2007. Tectonic and karst phenomena of the Ogrodzieniec Area. In: P. Socha, K., Stefaniak and A. Tyc (Eds), Karst and Cryokarst. Guidebook & Abstracts, 25th Speleological School, 8th GLACKIPR Symposium, pp. 120–121. Sosnowiec–Wrocław.
  • 114. Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J. and Żytko, K. 2011. Tectonic subdivision of Poland, 60 pp. Komitet Nauk Geologicznych Polskiej Akademii Nauk; Wrocław. [In Polish]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfa27cb9-61a4-43b8-a0c1-4941222fc4ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.