PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical study of the effect of the presence of a geometric discontinuity of variable shape on the tensile strength of an epoxy polymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of geometric discontinuity in a material reduces considerably its resistance to mechanical stresses, therefore reducing the service life of materials. The analysis of structural behaviour in the presence of geometric discontinuities is important to ensure the proper use, especially if it is regarding a material of weak mechanical properties such as a polymer. The objective of the present work is to analyse the effect of the notch presence of variable geometric shapes on the tensile strength of epoxy-type polymer specimens. A series of tensile tests were carried out on standardised specimens, taking into account the presence or absence of a notch. Each series of tests contains five specimens. Two notch shapes were considered: circular (hole) and elliptical. The experimental results in terms of stress–strain clearly show that the presence of notches reduces considerably the resistance of the material, where the maximum stress for the undamaged specimen was 41.22 MPa and the lowest stress for the elliptical-notched specimen was 11.21 MPa. A numerical analysis by the extended finite element method (XFEM) was undertaken on the same geometric models; in addition, the results in stress–strain form were validated with the experimental results. A remarkable improvement was obtained (generally an error within 0.06%) for strain, maximum stress, Young’s modulus and elongation values. An exponential decrease was noted in the stress, strain, and Young’s modulus in the presence of a notch in the material.
Rocznik
Strony
192--199
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, University of Mohamed Boudiaf-M’Sila, M’sila, Algeria
  • Laboratoire de Matériaux et Mécanique des Structures (LMMS), Université de M’sila, M’sila, Algérie
  • Department of Mechanical Engineering, University of Mohamed Boudiaf-M’Sila, M’sila, Algeria
  • Laboratoire de Matériaux et Mécanique des Structures (LMMS), Université de M’sila, M’sila, Algérie
autor
  • Department of Mechanical Engineering, University of Mohamed Boudiaf-M’Sila, M’sila, Algeria
  • Laboratoire de Matériaux et Mécanique des Structures (LMMS), Université de M’sila, M’sila, Algérie
autor
  • Laboratoire de Matériaux, et Mécanique des Structures (LMMS), Université SBA. Sidi Bel Abesse, Algérie
  • Laboratoire de Matériaux, et Mécanique des Structures (LMMS), Université SBA. Sidi Bel Abesse, Algérie
  • Faculty of Technology, M’hamed Bougara, University, Boumerdes 35000, Algeria
Bibliografia
  • 1. Hermansson F, Janssen M, Gellerstedt F. Environmental evaluation of Durapulp Bio-composite using LCA: comparison of two applications. J For. 2016; 5: 68-76.
  • 2. Kahl S, Peng RL, Calmunger M, Olsson B, Johansson S. In situ EBSD during tensile test of aluminum AA3003 sheet. Micron. 2014. 58: 15-24.
  • 3. Mohanty AK, Misra M, Drzal LT. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J Polym Environ. 2002; 10(1): 19-26.
  • 4. Calì M , Pascoletti G, Gaeta M , Milazzo G, Ambu R.A New Generation of Bio-Composite Thermoplastic Filaments for a More Sustainable Design of Parts Manufactured by FDM. Appl Sci. 2020; 10(17): 5852.
  • 5. Paiva JMd, Mayer S, Rezende MC. Comparison of tensile strength of different carbon fabric reinforced epoxy composites. Mater Res. 2006; 9(1): 83-90.
  • 6. Goutham ERS, Vamshi Y, Namratha M, Gupta KB, Chandrasekar M, Naveen J. Influence of glass fibre hybridization on the open hole tensile properties of pineapple leaf fiber/epoxy composites. AIP Conf Proc;2022.
  • 7. Larbi Chaht F, Mokhtari M, Benzaama H. Using a Hashin Criteria to predict the Damage of composite notched plate under traction and torsion behavior. Frat.Integrità.Strut. 2019; 13(50): 331-341.
  • 8. SaadallahY Modeling of mechanical behavior of cork in compression. Frat.Integrità.Strut.2020; 14(53): 417-425.
  • 9. Huang Y, Frings P, Hennes E. Mechanical properties of Zylon/epoxy composite. Composites, Part B.2002; 33(2): 109-115.
  • 10. Duc F, Bourban PE, Månson JAE The role of twist and crimp on the vibration behaviour of flax fibre composites. Compos Sci Technol 2014; 102: 94-99.
  • 11. uillén-Rujano R, Avilés F, Vidal-Lesso A, Hernández-Pérez A.Closed-form solution and analysis of the plate twist test in sandwich and laminated composites. Mech Mater. 2021; 155: 103753.
  • 12. Tretyakova TV, Wildemann VE, Strungar EM. Deformation and failure of carbon fiber composite specimens with embedded defects during tension-torsion test. Frat.Integrità.Strut .2018; 12(46):295-305.
  • 13. Liang S, Gning PB, Guillaumat L.A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos Sci Technol. 2012; 72(5): 535-543.
  • 14. Lu Z , Feng B, Loh C.Fatigue behaviour and mean stress effect of thermoplastic polymers and composites. Frat Integrità Strut 2018;12(46): 150-157.
  • 15. Banaszkiewicz M, Dudda W. Applicability of notch stress-strain correction methods to low-cycle fatigue life prediction of turbine rotors subjected to thermomechanical loads. acta mech autom. 2018;12(3).
  • 16. Panettieri E, Fanteria D , Montemurro M . Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study. Compos B Eng. 2016;107: 9-21.
  • 17. Baykan BM, Yolum U , Özaslan E , Güler MA, Yıldırım B. Failure Prediction of Composite Open Hole Tensile Test Specimens Using Bond Based Peridynamic Theory. Procedia Struct Integ. 2020; 28: 2055-2064.
  • 18. Hao A, Zhao H, Chen JY. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos B Eng. 2013; 54: 44-51.
  • 19. Galeta T, Raos P , Stojšić J , Pakši I. Influence of Structure on Mechanical Properties of 3D Printed Objects. Procedia Eng. 2016; 149: 100-104.
  • 20. hosravani MR, Rezaei S , Faroughi S , Reinicke T. Experimental and numerical investigations of the fracture in 3D-printed open-hole plates. Theor Appl Fract Mech.2022; 121:103543.
  • 21. Zako M, Uetsuji Y, Kurashiki T. Finite element analysis of damaged woven fabric composite materials. Compos Sci Technol. 2003; 63(3):507-516.
  • 22. Dixit A, Mali HS. Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review. Mech compos Mater. 2013; 49(1): 1-20.
  • 23. Eshraghi S, Das S. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta biomater. 2012; 8(8): 3138-3143.
  • 24. Mohammadi R , Najafabadi MA, Saeedifar M . Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites. Compos B Eng. 2017; 108: 427-435.
  • 25. Ghezzo, F, Giannini G, Cesari F, Caligiana G, Numerical and experimental analysis of the interaction between two notches in carbon fibre laminates. Compos Sci Technol. 2008; 68(3): 1057-1072.
  • 26. Liao T, Adanur S. A Novel Approach to Three-Dimensional Modeling of Interlaced Fabric Structures. Text Res J. 1998; 68(11): 841-847.
  • 27. Bogrekci l, Demircioglu P, Sucuoglu HS,Altun E, Sakar B, Durakbasa MN, Topology Optimization of a Tensiletest Specimen. Int Sci Bk; 2020.
  • 28. Khosravani MR. Influences of defects on the performance of adhesively bonded sandwich joints. Key eng mater; 2018.
  • 29. Kojnoková T, Nový F, Markovičová L. Evaluation of tensile properties of carbon fiber reinforced polymers produced from commercial prepregs. Mater Today Proc. 2022; 62: 2663-2668.
  • 30. Xu P, Yang C, Peng Y , Yao S, Zhang D, Li B .Crash performance and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles. int j mech sci. 2016; 107:1-12.
  • 31. Feulvarch E, Lacroix R, Deschanels H, A 3D locking-free XFEM formulation for the von Mises elasto-plastic analysis of cracks. Comput Methods Appl Mech Eng. 2020; 361: 112805.
  • 32. Frolov AS, Fedotov IV, Gurovich BA. Evaluation of the true-strength characteristics for isotropic materials using ring tensile test. nucl eng technol. 2021; 53(7): 2323-2333.
  • 33. Pilkey WD, Pilkey DF, Bi Z. Peterson's stress concentration factors;2020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfa13398-7690-4e69-a1c1-93eee0fb18fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.