PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Określenie rozpuszczalności głównych składników biogazu w membranie polisulfonowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Determination of the solubility of the main biogas components in a polysulfone membrane
Języki publikacji
PL
Abstrakty
PL
Przeprowadzono badania rozpuszczalności głównych składników biogazu w membranie polisulfonowej. Otrzymane metodą grawimetryczną izotermy adsorpcji opisano za pomocą modelu sorpcji dualnej. Stwierdzono bardzo dobrą zgodność modelu z wynikami eksperymentalnymi. Określono również udział rozpuszczalności poszczególnych gazów zarówno w matrycy polimerowej, jak i w objętości swobodnej szklistego polimeru.
EN
The biomethane sector should become much more visible in the face of global challenges such as reducing greenhouse gas emissions and replacing fossil fuels with renewable sources. Especially in the overall changes in the field of energy production, decarbonization of industry, and the circular economy. The value chain of biomethane produced by methane fermentation is shown in Figure 1. Based on the literature data and results of our research, it was found that the model has to include the multi-component nature of mass transport through the membrane in case of biogas separation. There is a high probability that for the CH 4-CO 2-membrane system, competitive sorption of those components occurs in the empty spaces of the glassy polymer. Including this phenomenon in the model should result in good agreement between numerical calculations and experimental data. This is particularly important in the case of the design and optimization of the biogas separation process into bioCH 4 and bioCO 2 streams. In this work, the total solubility (in the matrix and the free volume of the glassy polymer) was experimentally determined. The tested samples were taken from Air Products' commercial membrane module. The sorption isotherms of carbon dioxide, methane, nitrogen, and oxygen on a polysulfone membrane sample were determined by a gravimetric analyzer (Figure 3). Based on the results of the equilibrium concentrations and the corresponding pressures, gas solubilities in pressure function were determined. Adsorption isotherms of gases were determined at a temperature of 293 K and the pressure in the range from 0 to 10 bar. The measurement of a given isotherm point was ended when the measured change in the sample mass reached 99.8% of the predicted asymptotic value or the measurement time for a given point exceeded 120 minutes. For each isotherm, one cycle of pressure increasing and one cycle of pressure decreasing were performed. The obtained results are presented in Figures 6-7. It has been found that in the case of carbon dioxide, sorption/desorption hysteresis occurs, which may lead to changes in the transport properties of the membrane. The obtained adsorption isotherms of individual gases were described by the dual-mode sorption (DMS). The individual coefficients of this model (k D, CˈH , b), existing in equation (2), were determined using the least squares method. The values of these coefficients are presented in Table 1. Very good agreement of the DMS model with the experimental results is shown in Figure 8. In addition, the work also determines the share of solubility of individual gases both in the polymer matrix and in the free volume of the glassy polymer (Figures 9 and 10). It was found that Langmuir sorption has to be included for both carbon dioxide and methane, in contrast to oxygen and nitrogen.
Rocznik
Tom
Strony
56--77
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] Krajowy plan na rzecz energii i klimatu na lata 2021-2030 - Ministerstwo Klimatu I Środowiska - Portal Gov.pl, Ministerstwo Klimatu i Środowiska. https://www.gov.pl/web/klimat/krajowy-plan-na-rzecz-energii-i-klimatu (dostęp: 07.10.2024).
  • [2] PRISM GreenSep, Air Products Membrane Solutions. https://membranesolutions.com/prism-greensep/ (dostęp: 08.10.2024).
  • [3] UBE CO2 Separator for Biogas Upgrading, UBE Corporation Europe. https://ube.es/products/biogas-upgrading-biomethane-co2-separator/ (dostęp: 21.09.2024).
  • [4] SEPURAN® Green I Membranes for efficient biogas upgrading. https://www.membrane-separation.com/en/upgrading-of-biogas-to-biomethane-with-sepuran-green (dostęp: 21.09.2024).
  • [5] Air Liquide, Biogas upgrading units | Air Liquide Advanced Technologies. https://advancedtech.airliquide.com/markets-solutions/energy-transition/biogas-upgrading-units (dostęp: 08.10.2024).
  • [6] Do 2030 r. w UE powstanie 950 nowych biometanowni. Ile w Polsce? https://www.teraz-srodowisko.pl/aktualnosci/950-nowych-biometanowni-do-2030-polskie-forum-biometanu-15657.html (dostęp: 17.10.2024).
  • [7] Raport “Biogaz i biometan w Polsce 2024,” Magazyn Biomasa (2024). https://magazynbiomasa.pl/pobierz-raport-biogaz-i-biometan-w-polsce-2024/ (dostęp: 07.10.2024).
  • [8] W. Tomczak, M. Gryta, M. Daniluk, S. Żak, Biogas Upgrading Using a Single-Membrane System: A Review, Membranes 14 (2024) 80. https://doi.org/10.3390/membranes14040080.
  • [9] Biogaz rolniczy – produkcja i wykorzystanie, Mazowiecka Agencja Energetyczna Sp. Z o.o., Warszawa, 2009.
  • [10] E. Ricci, F.M. Benedetti, M.E. Dose, M.G.D. Angelis, B.D. Freeman, D.R. Paul, Competitive sorption in CO 2 /CH4 separations: the case of HAB-6FDA polyimide and its TR derivative and a general analysis of its impact on the selectivity of glassy polymers at multicomponent conditions, Journal of Membrane Science 612 (2020) 118374. https://doi.org/10.1016/j.memsci.2020.118374.
  • [11] E. Ricci, M. Minelli, M.G. De Angelis, Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review, Membranes 12 (2022) 857. https://doi.org/10.3390/membranes12090857.
  • [12] E. Ricci, M.G. De Angelis, Modelling Mixed-Gas Sorption in Glassy Polymers for CO 2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model, Membranes 9 (2019) 8. https://doi.org/10.3390/membranes9010008.
  • [13] A. Janusz-Cygan, J. Jaschik, M. Tańczyk, Upgrading Biogas from Small Agricultural Sources into Biomethane by Membrane Separation, Membranes 11 (2021) 938. https://doi.org/10.3390/membranes11120938.
  • [14] S. Kanehashi, K. Nagai, Analysis of dual-mode model parameters for gas sorption in glassy polymers, Journal of Membrane Science 253 (2005) 117–138. https://doi.org/10.1016/j.memsci.2005.01.003.
  • [15] Y. Tsujita, Gas sorption and permeation of glassy polymers with microvoids, Progress in Polymer Science 28 (2003) 1377–1401. https://doi.org/10.1016/S0079-6700(03)00048-0.
  • [16] K.A. Stevens, Z.P. Smith, K.L. Gleason, M. Galizia, D.R. Paul, B.D. Freeman, Influence of temperature on gas solubility in thermally rearranged (TR) polymers, Journal of Membrane Science 533 (2017) 75–83. https://doi.org/10.1016/j.memsci.2017.03.005.
  • [17] S. Neyertz, D. Brown, Single- and mixed-gas sorption in large-scale molecular models of glassy bulk polymers. Competitive sorption of a binary CH 4 /N2 and a ternary CH 4 /N 2/CO2 mixture in a polyimide membrane, Journal of Membrane Science 614 (2020) 118478. https://doi.org/10.1016/j.memsci.2020.118478.
  • [18] Analizator grawimetryczny. https://hidenisochema.com/hiden-products/iga-001/ (dostęp: 26.01.2024).
  • [19] M.S. Suleman, K.K. Lau, Y.F. Yeong, Plasticization and Swelling in Polymeric Membranes in CO 2 Removal from Natural Gas, Chemical Engineering & Technology 39 (2016) 1604–1616. https://doi.org/10.1002/ceat.201500495.
  • [20] F. Kadirkhan, P.S. Goh, A.F. Ismail, W.N.F. Wan Mustapa, M.H.M. Halim, W.K. Soh, S.Y. Yeo, Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO 2/CH4 Applications—A Review, Membranes 12 (2022) 71. https://doi.org/10.3390/membranes12010071.
  • [21] G. Wiciak, K. Janusz-Szymańska, A. Janusz-Cygan, A. Pawlaczyk, Swelling and plasticization of the polymer membrane under the influence of contaminants containing hydrogen sulfide, Desalination and Water Treatment 316 (2023) 514–519. https://doi.org/10.5004/dwt.2023.30167.
  • [22] A.J. Erb, D.R. Paul, Gas sorption and transport in polysulfone, Journal of Membrane Science 8 (1981) 11–22. https://doi.org/10.1016/S0376-7388(00)82135-3.
  • [23] L.D. Biondo, J. Duarte, M. Zeni, M. Godinho, A Dual-mode model interpretation of CO2/CH4 permeability in polysulfone membranes at low pressures, An. Acad. Bras. Ciênc. 90 (2018) 1855–1864. https://doi.org/10.1590/0001-3765201820170221.
  • [24] J.S. McHattie, W.J. Koros, D.R. Paul, Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings, Polymer 32 (1991) 840–850. https://doi.org/10.1016/0032-3861(91)90508-G.
  • [25] C.C. Hu, C.S. Chang, R.C. Ruaan, J.Y. Lai, Effect of free volume and sorption on membrane gas transport, Journal of Membrane Science 226 (2003) 51–61. https://doi.org/10.1016/j.memsci.2003.07.010.
  • [26] C.A. Scholes, G.Q. Chen, G.W. Stevens, S.E. Kentish, Plasticization of ultra-thin polysulfone membranes by carbon dioxide, Journal of Membrane Science 346 (2010) 208–214. https://doi.org/10.1016/j.memsci.2009.09.036.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfa046a7-22a6-4d64-8926-79acc97bb744
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.