PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Weak solutions to the time-fractional g-Navier-Stokes equations and optimal control

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce the g-Navier-Stokes equations with time-fractional derivative of order α ∈ (0, 1) in domains of ℝ2. We then study the existence and uniqueness of weak solutions by means of the Galerkin approximation. Finally, an optimal control problem is considered and solved.
Wydawca
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Ibn Zohr University, Agadir, Morocco
  • Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University, Agadir, Morocco
  • Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University, Agadir, Morocco
Bibliografia
  • [1] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A 40 (2007), no. 24, 6287-6303.
  • [2] A. A. Alikhanov, A priori estimates for solutions of boundary value problems for equations of fractional order, Differ. Equ. 46 (2010), 660-666.
  • [3] C. T. Anh and D. T. Quyet, g-Navier-Stokes equations with infinite delays, Vietnam J. Math. 40 (2012), no. 1, 57-78.
  • [4] C. T. Anh and D. T. Quyet, Long-time behavior for 2D non-autonomous g-Navier-Stokes equations, Ann. Polon. Math. 103 (2012), no. 3, 277-302.
  • [5] C. T. Anh, N. V. Thanh and N. V. Tuan, On the stability of solutions to stochastic 2D g-Navier-Stokes equations with finite delays, Random Oper. Stoch. Equ. 25 (2017), no. 4, 211-224.
  • [6] H.-O. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), 85-102.
  • [7] R. Camassa, D. D. Holm and C. D. Levermore, Long-time effects of bottom topography in shallow water, Phys. D 98 (1996), no. 2-4, 258-286.
  • [8] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Monogr. Math., Springer, New York, 2011.
  • [9] J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329 (1992), no. 1, 185-219.
  • [10] J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures Appl. (9) 71 (1992), no. 1, 33-95.
  • [11] J. Jiang and Y. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on R2, Appl. Math. Comput. 215 (2009), no. 3, 1068-1076.
  • [12] J.-P. Jiang and Y.-R. Hou, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech. (English Ed.) 31 (2010), no. 6, 697-708.
  • [13] J.-P. Jiang, Y.-R. Hou and X.-X. Wang, Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness, Appl. Math. Mech. (English Ed.) 32 (2011), no. 2, 151-166.
  • [14] J.-P. Jiang and X.-X. Wang, Global attractor of 2D autonomous g-Navier-Stokes equations, Appl. Math. Mech. (English Ed.) 34 (2013), no. 3, 385-394.
  • [15] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
  • [16] M. Kwak, H. Kwean and J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl. 315 (2006), no. 2, 436-461.
  • [17] H. Kwean, The H1-compact global attractor of two-dimensional g-Navier-Stokes equations, Far East J. Dyn. Syst. 18 (2012), no. 1, 1-20.
  • [18] H. Kwean and J. Roh, The global attractor of the 2D g-Navier-Stokes equations on some unbounded domains, Commun. Korean Math. Soc. 20 (2005), no. 4, 731-749.
  • [19] P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC, Boca Raton, 2002.
  • [20] C. D. Levermore, M. Oliver and E. S. Titi, Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J. 45 (1996), no. 2, 479-510.
  • [21] C. D. Levermore, M. Oliver and E. S. Titi, Global well-posedness for the lake equations, Phys. D 98 (1996), 492-596.
  • [22] J.-L. Lions, Sur l’existence de solutions des équations de Navier-Stokes, C. R. Acad. Sci. Paris 248 (1959), 2847-2849.
  • [23] G. Ł ukaszewicz and P. Kalita, Navier-Stokes Equations. An Introduction with Applications, Adv. Mech. Math. 34, Springer, Cham, 2016.
  • [24] H. Mahdioui, S. Ben Aadi and K. Akhlil, Hemivariational inequality for Navier-Stokes equations: Existence, dependence, and optimal control, Bull. Iran. Math. Soc. (2020), DOI 10.1007/s41980-020-00470-x.
  • [25] D. T. Quyet, Asymptotic behavior of strong solutions to 2D g-Navier-Stokes equations, Commun. Korean Math. Soc. 29 (2014), no. 4, 505-518.
  • [26] D. T. Quyet, Pullback attractors for strong solutions of 2D non-autonomous g-Navier-Stokes equations, Acta Math. Vietnam. 40 (2015), no. 4, 637-651.
  • [27] D. T. Quyet, Pullback attractors for 2D g-Navier-Stokes equations with infinite delays, Commun. Korean Math. Soc. 31 (2016), no. 3, 519-532.
  • [28] D. T. Quyet and N. V. Tuan, On the stationary solutions to 2D g-Navier-Stokes equations, Acta Math. Vietnam. 42 (2017), no. 2, 357-367.
  • [29] G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), no. 3, 503-568.
  • [30] J. Roh, g-Navier-Stokes equations, Ph.D. Thesis, University of Minnesota, 2001.
  • [31] J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), no. 2, 452-484.
  • [32] J. Roh, Geometry of L2(Ω; g), J. Chungcheong Math. Soc. 19 (2006), no. 3, 283-289.
  • [33] T. Tachim Medjo, A note on the regularity of weak solutions to the coupled 2D Allen-Cahn-Navier-Stokes system, J. Appl. Anal. 25 (2019), no. 1, 111-117.
  • [34] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd ed., Stud. Math. Appl. 2, North-Holland, Amsterdam, 1984.
  • [35] D. Wu, The finite-dimensional uniform attractors for the nonautonomous g-Navier-Stokes equations, J. Appl. Math. 2009 (2009), Article ID 150420.
  • [36] D. Wu, On the dimension of the pullback attractors for g-Navier-Stokes equations, Discrete Dyn. Nat. Soc. 2010 (2010), Article ID 893240.
  • [37] W. M. Zaja¸ czkowski, On nonstationary motion of a compressible barotropic viscous fluid with boundary slip condition, J. Appl. Anal. 4 (1998), no. 2, 167-204.
  • [38] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Hackensack, 2014.
  • [39] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016.
  • [40] Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Comput. Math. Appl. 73 (2017), no. 6, 1016-1027.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf8eb8dc-28df-410e-8980-a8680e6c9fe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.