PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of concrete life under coupled dry and wet-sulfate erosion based on damage evolution equation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a corrosive environment with coupled dry-wet-sulfate action, concrete structures are susceptible to erosion by sulfate ions, which seriously affects the safe operating life. To forecast the operational lifetime of concrete below the influence of the dry-wet cycle and sulfate erosion environment, four different admixtures of polypropylene fiber: 0, 0.6, 0.9, and 1.2 kg/m3, were incorporated into concrete specimens, and indoor accelerated tests were designed to observe the macroscopic and microscopic deterioration law analysis of concrete specimens; using the precept of damage mechanics, the damage of concrete under solubility cycle was established. The damage evolution equation of concrete under freeze-thaw cycles was established and the operational life of concrete was predicted. The results showed that the overall mass loss rate of concrete specimens increased with the number of tests, and the relative energetic modulo decreased with the number of tests; the pore change pattern, microstructure, and internal material composition of specimens under different working conditions were obtained by using NMR scanning technique, SEM electron microscope scanning technique and XRD physical phase analysis technique. The damage evolution equation shows that adding a certain amount of polypropylene fiber to concrete can improve the working life of concrete under dry and wet connected sulfate assault.
Rocznik
Strony
679--692
Opis fizyczny
Bibliogr. 11 poz., il., tab.
Twórcy
autor
  • Station Building Construction Department, China Railway Guangzhou Bureau Group Co., China
Bibliografia
  • [1] K. Liu, S. Wang, X. Quan, et al., “Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycles resistance of concrete”, Case Studies in Construction Materials, vol. 17, 2022, doi: 10.1016/J.CSCM.2022.E01472.
  • [2] A.H. Shalan and M.M. El-Gohary, “Long-Term Sulfate Resistance of Blended Cement Concrete with Waste Glass Powder”, Practice Periodical on Structural Design and Construction, vol. 27, no. 4, 2022, doi: 10.1061/(ASCE)SC.1943-5576.0000731.
  • [3] W.Z. Taffese and L. Espinosa-Leal, “Prediction of the chloride resistance level of concrete using machine learning for durability and operating life assessment of building structures”, Journal of Building Engineering, vol. 60, 2022, doi: 10.1016/J.JOBE.2022.105146.
  • [4] H.X. Chen and X.Q. Song, “Experimental study on the strength dispersion of recycled aggregates concrete”, Journal of Xi’an University of Science and Technology, vol. 41, no. 2, pp. 290-297, 2021, doi: 10.13800/j.cnki.xakjdxxb.2021.0213.
  • [5] M.C. Chen, Q.Q. Wen, R. Luo, et al., “Investigation on Prediction Models of Damage Evolution and Fatigue Lifetime for Reinforced Concrete Beams of Metros”, Journal of the China Railway Society, vol. 43, no. 1, pp. 160-168, 2021, doi: 10.3969/j.issn.1001-8360.2021.01.021.
  • [6] E. Zgheib and W. Raphael, “Study of the admixtures effect on concrete creep using Bayesian Linear Regression”, Archives of Civil Engineering, vol. 65, no 3, pp. 127-140, 2019, doi: 10.2478/ace-2019-0039.
  • [7] B. Vakhshouri and S. Nejadi, “Prediction of Compressive Strength in Light-Wight Self- Compacting Concrete by ANFIS Analytical Model”, Archives of Civil Engineering, vol. 61, no. 2, pp. 53-72, 2015, doi: 10.1515/ace-2015-0014.
  • [8] G. Lei, W. Jian, S.Z. Zhong, et al., “Degradation of basalt fiber concrete under the action of sulfate and dry wet cycle”, Chinese Journal of Civil Engineering, vol. 54, no. 11, pp. 37-46, 2021, doi: 10.15951/j.tmgcxb.2021.11.001.
  • [9] N. Kumar and M. Barbato, “Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks”, Construction and Building Materials, vol. 315, 2022, doi: 10.1016/j.conbuildmat.2021.125552.
  • [10] P.Z. Xiao, R.L. Zhang, R.P. Hu, et al., “Study on the Sulfate Resistance of Concrete and the Influencing Factors of Ion Diffusion”, Materials China, vol. 40, no. 5, pp. 359-365, 2021, doi: 10.7502/j.issn.1674-3962.201911031.
  • [11] H. Yu, X. Ma, and K. Yan, “An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life”, Construction and Building Materials, vol. 137, pp. 104-116, 2017, doi: 10.1016/j.conbuildmat.2017.01.042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf8dba44-04ec-4ff1-a40c-02ee491d4cd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.