Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper delves into a significant area of research, exploring the application of the standard boundary element method (BEM) to analyze inverse acoustic frequency scattering problems in 2D space using a rigid corrugated circular object. The inverse problem is reformulated as an optimization problem, with the boundary of the scatterer parametrized to reduce the number of optimization variables. The influence of these parameters on imaging results based on near-field data is examined. The analysis uses a flat wave illuminating the object along the positive x-axis direction. The study evaluates the accuracy of the solution across various parameters defining the boundary of the analyzed object. The findings, which significantly contribute to advancements in computational methods, non-destructive testing, and the understanding of functional properties of materials and structures, offer valuable insights into numerical techniques and their practical engineering applications.
Wydawca
Rocznik
Tom
Strony
396--405
Opis fizyczny
Bibliogr. 35 poz., fig.
Twórcy
autor
- Research & Development Centre Netrix S.A., ul. Związkowa 26, 20-148 Lublin, Poland
- Faculty of Transport and Informatics, WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
autor
- Research & Development Centre Netrix S.A., ul. Związkowa 26, 20-148 Lublin, Poland
- Faculty of Transport and Informatics, WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
autor
- Faculty of Management, Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland
autor
- Faculty of Management, Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland
Bibliografia
- 1. Venås JV, Kvamsdal T. Isogeometric boundary element method for acoustic scattering by a submarine. Comput Methods Appl Mech Eng 2020; 359: 112670. https://doi.org/10.1016/J.CMA.2019.112670.
- 2. Wu SW, Xiang Y. A coupled hybrid smoothed radial point interpolation method for computing underwater acoustic scattering. Physics of Fluids 2023; 35: 107103. https://doi.org/10.1063/5.0167514/2914207.
- 3. Rymarczyk T, Sikora J. Some more on logarithmic singularity integration in boundary element method. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska 2024; 14: 5–10. https://doi.org/10.35784/IAPGOS.5864.
- 4. Chen L, Zhao J, Lian H, Yu B, Atroshchenko E, Li P. A BEM broadband topology optimization strategy based on Taylor expansion and SOAR method—Application to 2D acoustic scattering problems. Int J Numer Methods Eng 2023; 124: 5151–82. https://doi.org/10.1002/NME.7345.
- 5. Fakhraei J, Arcos R, Pàmies T, Romeu J. 2.5D singular boundary method for exterior acoustic radiation and scattering problems. Eng Anal Bound Elem 2022; 143: 293–304. https://doi.org/10.1016/J.ENGANABOUND.2022.06.017.
- 6. Wei Y, Wang B, Qian Z. A Modified Boundary Element Solution for Ultrasonic Guided Wave Mode-Conversion and Scattering in Curved Plates. Proceedings of the 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, SPAWDA 2022; 2022: 567–71. https://doi.org/10.1109/SPAWDA56268.2022.10045862.
- 7. Yang F, Peng Z, Song H, Tang Y, Miao X. A hybrid finite element method – Kirchhoff approximation method for modeling acoustic scattering from an underwater vehicle model with Alberich coatings with periodic internal cavities. Archives of Acoustics 2024; 49: 209–219. https://doi.org/10.24425/AOA.2024.148777.
- 8. Ilnicki A, Rzasa MR. Numerical modelling of engine operation with a variable state of compression. CEUR Workshop Proc 2023; 3628: 282–92.
- 9. Bilynsky Y, Nikolskyy A, Revenok V, Pogorilyi V, Smailova S, Voloshina O, Kumargazhanova S. Convolutional neural networks for early computer diagnosis of child dysplasia. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska 2023; 13: 56–63. https://doi.org/10.35784/IAPGOS.3499.
- 10. Kłosowski G, Rymarczyk T, Niderla K, Kulisz M, Skowron Ł, Soleimani M. Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography – a hybrid approach. Eksploatacja i Niezawodnosc 2023; 25. https://doi.org/10.17531/EIN.2023.1.11.
- 11. Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodnosc 2023; 25. https://doi.org/10.17531/EIN/172857.
- 12. Korzeniewska E, Zawiślak R, Szymon P, Bilska A, Sarna P. Selection of wireless communication technology for data transmission between wearable electronics devices and the receiver. Przeglad Elektrotechniczny 2023; 2023: 303–6. https://doi.org/10.15199/48.2023.12.57.
- 13. Schanz M. Realizations of the generalized adaptive cross approximation in an acoustic time domain boundary element method. PAMM 2023; 23: e202300024. https://doi.org/10.1002/PAMM.202300024.
- 14. Liu C, Hu G, Xiang J, Zhang J. Uniqueness to inverse acoustic and elastic medium scattering problems with hyper-singular source method 2024.
- 15. Peake MJ, Trevelyan J, Coates G. Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems. Comput Methods Appl Mech Eng 2015; 284: 762–80. https://doi.org/10.1016/J.CMA.2014.10.039.
- 16. Wajman R, Nowakowski J, Łukiański M, Banasiak R. Machine learning for two-phase gas-liquid flow regime evaluation based on raw 3D ECT measurement data. Bulletin of the Polish Academy of Sciences: Technical Sciences 2024; 72. https://doi.org/10.24425/BPASTS.2024.148842.
- 17. Wajman R. The concept of 3D ECT system with increased border area sensitivity for crystallization processes diagnosis. Sensor Review 2021; 41: 35–45. https://doi.org/10.1108/SR-10-2019-0254.
- 18. Charalambopoulos A, Gergidis L, Vassilopoulou E. A conditioned probabilistic method for the solution of the inverse acoustic scattering problem. Mathematics 2022; 10: 1383. https://doi.org/10.3390/MATH10091383.
- 19. Heronimczak M, Mrowiec A, Rząsa M, Koszela K. Measurements of the flow of a liquid–solid mixture/suspension through a segmented orifice. Sci Rep 2024; 14. https://doi.org/10.1038/S41598-023-50737-6.
- 20. Poblet-Puig J, Rodríguez-Ferran A. The finite strip method for acoustic and vibroacoustic problems. https://DoiOrg/101142/S0218396X11004456 2012; 19: 353–78. https://doi.org/10.1142/S0218396X11004456.
- 21. Albin N. High-order numerical methods for nonlinear acoustics: A Fourier Continuation approach. J Acoust Soc Am 2012; 132: 1919–1919. https://doi.org/10.1121/1.4755041.
- 22. Becker AA. The boundary element method in engineering : a complete course. McGraw-Hill; 1992.
- 23. Colton D, Kress R. Integral equation methods in scattering theory. Springer; 1993.
- 24. Baynes AB. Scattering of low-frequency sound by compact objects in underwater waveguides. PhD Dissertation. Naval Postgraduate School, 2018.
- 25. Jeong C, Na SW, Kallivokas LF. Near-surface localization and shape identification of a scatterer embedded in a halfplane using scalar waves. Journal of Computational Acoustics 2011; 17: 277–308. https://doi.org/10.1142/S0218396X09003963.
- 26. Li P, Wang Y. Numerical solution of an inverse obstacle scattering problem with near-field data. J Comput Phys 2015; 290: 157–68. https://doi.org/10.1016/J.JCP.2015.03.004.
- 27. Kirkup S. The boundary element method in acoustics: a survey. Applied Sciences 2019; 9: 1642. https://doi.org/10.3390/APP9081642.
- 28. Kirkup S. The boundary element method in acoustics. A development in Fortran; 2007.
- 29. Sikora J. Forward acoustic problem analyzed by boundary element method. Przeglad Elektrotechniczny 2023; 99: 274–7. https://doi.org/10.15199/48.2023.01.55
- 30. Jabłoński P. Engineering Physics – Electromagnetism. Częstochowa University of Technology; 2009.
- 31. I-Campus: Waves Module n.d. http://web.mit.edu/fluids-modules/waves/www/c-index.html (accessed July 2, 2024).
- 32. Rymarczyk T. Tomographic imaging in environmental, industrial and medical applications. Innovation Press Publishing Hause; 2019.
- 33. Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: John Wiley; 1973.
- 34. Sikora J. Boundary element method for impedance and optical tomography. Warsaw University of Technology Publishing Hause; 2007.
- 35. Lynott GM. Efficient numerical evaluation of the scattering of acoustic and elastic waves by arrays of cylinders of arbitrary cross section. PhD Dissertation. University of Manchester, 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf882bc5-4d0d-4143-8671-6080405f6010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.