Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Advancements in digitizing technologies in recent years have enabled the creation of precise three-dimensional models using specialized equipment such as terrestrial laser scanners. Unfortunately, working with a device placed on the ground surface makes it impossible to directly measure roof structures, building vertices and hard-to-reach areas. However, unmanned aerial vehicles equipped with high-resolution cameras and a precise control system that allows maneuvers in the aforementioned places have a chance in this field. This article presents the complete process of digital 3D modeling of the town hall building in Zamość, using a combination of photogrammetry and laser scanning, along with geodetic measurement techniques. The study covers the planning stage, the field stage, and ends with accuracy analyses. Finally, the potential applications of the aforementioned object are discussed. The research identified several challenges during the project, including the need for meticulous planning to ensure optimal data acquisition, dealing with limitations of equipment mobility, and addressing data quality issues such as image blurriness and exposure variations. However, through careful calibration, data filtering, and quality assessment, these challenges were successfully mitigated. The study demonstrated the potential of advanced geodetic techniques in accurately digitizing complex architectural structures with rich historical significance. The detailed 3D model of the Zamość town hall serves as a valuable resource for further research, preservation efforts, and heritage documentation.
Wydawca
Rocznik
Tom
Strony
345--357
Opis fizyczny
Bibliogr. 37 poz., fig., tab.
Twórcy
- University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
autor
- University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
autor
- University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
Bibliografia
- 1. Boroń A., Rzonca A., Wróbel A.. The digital photogrammetry and laser scanning methods used for heritage documentation. Roczniki Geomatyki-Annals of Geomatics 2007; 5(8): 129-40. (in Polish)
- 2. Smith M.J., Priestnall G., Asal F. Combining LIDAR and photogrammetry for urban and rural landscape studies. International Archives of Photogrammetry and Remote Sensing 2000; 33(B3): 44-50
- 3. Kabadayi A., Erdoğan A. Application of terrestrial photogrammetry method in cultural heritage studies: A case study of Seyfeddin Karasungur. Mersin Photogrammetry Journal 2022; 4(2): 62-7.
- 4. Dhanda A., Ortiz MR., Weigert A., Paladini A., Min A., Gyi M., et al. Recreating cultural heritage environments for VR using photogrammetry. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2019; 42: 305-10.
- 5. Gołka J., Haliński J. Digital photogrammetry in architecture - new possibilities for stocktaking and archiving objects. Archiwum Fotogrametrii, Kartografii i Teledetekcji 2000; 10. (in Polish)
- 6. Gołka J., Haliński J. The use of digital photogramme- try in architectural studies on the example of the front elevation of the Town Hall in Zamość. Archiwum Fotogrametrii, Kartografii i Teledetekcji 1998; 8. (in Polish)
- 7. Milosz M., Kęsik J., Montusiewicz, J. 3D Scanning and Visualization of Large Monuments of Timurid Architecture in Central Asia -- A Methodical Approach. Journal on Computing and Cultural Heritage 2021; 14(1), 1–31.
- 8. da Silva Ruiz P. R., Almeida C. M. D., Schimalski M. B., Liesenberg, V., Mitishita, E. A. Multiapproach integration of ALS and TLS point clouds for a 3-D building modeling at LoD3. International Journal of Architectural Computing 2023; 14780771231176029
- 9. Mill T., Alt A., Liias R. Combined 3D building surveying techniques–terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes. Journal of Civil Engineering and Management 2013; 19: 23-32
- 10. Anderson K., Westoby M.J., James M.R.. Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences. SAGE Publications Sage UK: London, England 2019; 163-73.
- 11. Hassan A.T., Fritsch D. Integration of Laser Scanning and Photogrammetry in 3D/4D Cultural Heritage Preservation – A Review. International Journal of Applied 2019; 9(4).
- 12. Linder W. Digital photogrammetry: theory and applications: Springer Science & Business Media, 2013.
- 13. Fraser C.S. Automatic camera calibration in close range photogrammetry. Photogrammetric Engineering and Remote Sensing 2013; 79(4): 381-8.
- 14. Bernasik J., Mikrut S. Engineering photogrammetry. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Wydział Geodezji Górniczej i Inżynierii Środowiska, Kraków, 2007. (in Polish)
- 15. Głowienka E., Jankowicz B., Kwoczyńska B., Kuras P., Michałowska K., Mikrut S., et al. Photogram- metry and laser scanning in 3D modeling. WSIE, Rzeszów, 2015. (in Polish)
- 16. Grussenmeyer P., Landes T., Voegtle T., Ringle K. Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for record- ing of cultural heritage buildings. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2008; 37(B5): 213-8.
- 17. Jo Y.H., Hong S. Three-dimensional digital docu- mentation of cultural heritage site based on the con- vergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry. ISPRS International Journal of Geo-Information 2019; 8(2): 53.
- 18. Nex F., Rinaudo F. LiDAR or Photogrammetry? Integration is the answer. Italian Journal of Remote Sensing 2011; 43(2): 107-21.
- 19. Przegon H. Report of the scientific conference „The cultural space of Zamość: urban planning, architecture, landscape, city life”, Zamość 15.06.2015 r. Teka Komisji Urbanistyki i Architektury Oddziału Polskiej Akademii Nauk w Krakowie, 2015: 9-17.
- 20. Osada E. Geodetic Reference Systems. UxLan Firma Informatyczna Józef Osada, 2016. (in Polish)
- 21. Sawicki P. Unmanned aerial vehicles in photo-grammetry and remote sensing – state of the art. and trends. Archiwum Fotogrametrii, Kartografii i Teledetekcji 2012; 23: 365-76. (in Polish)
- 22. Regulation of the Minister of Development of August 18, 2020 on technical standards for collecting geodetic situational and altitude measurements, as well as developing and transferring the results of such measurements to the state geodetic and cartographic office [after:] https://isap.sejm.gov.pl/isap. nsf/DocDetails.xsp?id=WDU20200001429 [access: June 25, 2023]
- 23. Hermanowski A. Mean observation errors in horizontal grids aligned with tie-in conditions. Instytut Geodezji i Kartografii, 1978. (in Polish)
- 24. Mavic 2 PRO/ZOOM. User manual v1.4. 2018.10; 62.
- 25. Kelby S. The Digital Photography Book. San Rafael, CA: Rocky Nook, Inc., 2020.
- 26. Lee D.-T., Schachter B. J. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer & Information Sciences 1980; 9(3): 219-242.
- 27. Sinclair D. A 3D Sweep Hull Algorithm for computing Convex Hulls and Delaunay Triangulation. arXiv preprint arXiv:1602.04707, 2016.
- 28. Mao Z., Zhu H., et al. Glass façade segmentation and repair for aerial photogrammetric 3D building models with multiple constraints. Int J Appl Earth Obs Geoinf. 2023; 118: 103242.
- 29. Poranne R. et al. Autocuts: simultaneous distortion and cut optimization for UV mapping. ACM Trans. Graph. 2017; 36(6): 1-11.
- 30. Dostal C, Yamafune K. Photogrammetric texture mapping: A method for increasing the fidelity of 3D models of cultural heritage materials. J Archaeol Sci Rep. 2018; 18: 430-436.
- 31. Fryśkowska-Skibniewska A. Onyszko K. Grzywna P. Comparative analysis of the point clouds generated from UAV image data and terrestrial laser scanning for modeling information about historic buildings (hBIM). FIG Congress 2022. Warsaw, Poland 2022.
- 32. Tysiac P., Sieńska A., Tarnowska M., Kedziorski P., Jagoda M. Combination of terrestrial laser scanning and UAV photogrammetry for 3D modelling and degradation assessment of heritage building based on a lighting analysis: case study—St. Adalbert Church in Gdansk, Poland. Herit Sci 2023; 11(1): 53.
- 33. Moon D., Chung S., Kwon S., Seo J., Shin J. Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction 2019; 98: 322-331.
- 34. Giżyńska J., Komorowska E., Kowalczyk M. The comparison of photogrammetric and terrestrial laser scanning methods in the documentation of small cultural heritage object – case study. J Mod Technol Cult Herit Preserv. 2022; 1(1): 13-26
- 35. Jo Y., Hong S. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS International Journal of Geo-Information 2019; 8(2):53.
- 36. Burley B., Lacewell D. Ptex: Per-face texture mapping for production rendering. Eurographics Association 2008; 1155-1164.
- 37. Hauagge D., Wehrwein S., Bala K., Snavely N. Photometric Ambient Occlusion for Intrinsic Image Decomposition. IEEE Trans. Pattern Anal. Mach. Intell 2016; 38(4): 639-651.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf8701e2-1010-478a-9a5e-497e3254245a