PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lithospheric mantle anisotropy from local events beneath the Sunda–Banda arc transition and its geodynamic implications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shear wave splitting analysis to characterise lithospheric mantle anisotropy has been performed to provide better knowledge about lithospheric deformation and mantle fow beneath the Sunda–Banda arc transition, Indonesia. The tectonic setting of the study area is very complex characterised by the transition from subduction along Sunda arc to collision in Banda arc. The splitting measurements show lateral and vertical variation in the fast directions of the S-waves in this region. When the splitting results are analysed through 2D delay-time tomography and spatial averaging, systematic patterns in delay times and fast polarisation become more visible. In the subduction domain, the spatial averages of fast directions are dominated by two distinct fast polarisations: perpendicular and parallel to the plate motion for shallow and deep events, respectively. The results suggest that anisotropy in this area is not only controlled by anisotropic source related to the simple mantle fow model, but also by anisotropic fabric in the mantle deformed under infuence of high stresses, high water contents and low temperatures. In addition, there might also be contribution from the anisotropic body in the upper layer. In the collision domain, spatially averaged fast directions show mostly perpendicular to the plate motion for all deep levels. For shallow level in this region, this trend is mainly governed by the lithospheric deformation process due to the continent-arc collision as also shown by delay time tomographic inversion. For deeper part of the region, the result of tomographic inversion and spatial averaging reveals a high anisotropy followed by rotational pattern of fast directions in the north of Timor. We suggest that this pattern might be related to the induced mantle fow due to lateral tearing of the slab.
Czasopismo
Rocznik
Strony
1565--1593
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
  • Research Centre for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan, Banten, Indonesia
  • Research Centre for Deep Sea-LIPI, Ambon, Indonesia
  • Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Kota Bandung, Indonesia
  • Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Kota Bandung, Indonesia
autor
  • Research Centre for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan, Banten, Indonesia
  • Research Centre for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan, Banten, Indonesia
  • Research Centre for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan, Banten, Indonesia
Bibliografia
  • 1. Audley-Charles MG (1975) The Sumba fracture: a major discontinuity between Eastern and Western Indonesia. Tectonophysics 26:213–228. https://doi.org/10.1016/0040-1951(75)90091-8
  • 2. Audoine E, Savage MK, Gledhill K (2000) Seismic anisotropy from local earthquakes in the transition region from a subduction to a strike-slip plate boundary, New Zealand. J Geophys Res Solid Earth 105:8013–8033. https://doi.org/10.1029/1999JB900444
  • 3. Baccheschi P, Margheriti L, Steckler MS (2007) Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys Res Lett 34:L05302. https://doi.org/10.1029/2006GL028899
  • 4. Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana arc. J Geophys Res Solid Earth 113:B08S09. https://doi.org/10.1029/2007jb005423
  • 5. Barber AJ (1978) Structural interpretations of the island of Timor, eastern Indonesia. Proc Southeast Asia Pet Soc 4:9–21
  • 6. Barber AJ, Audley-Charles MG, Carter DJ (1977) Thrust tectonics in Timor. J Geol Soc Aust 24:51–62. https://doi.org/10.1080/00167617708728966
  • 7. Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, McCaffrey R, Subarya C, Puntodewo SSO, Calais E (2003) Crustal motion in Indonesia from global positioning system measurements. J Geophys Res 108(B8):2367. https://doi.org/10.1029/2001JB000324
  • 8. Cagnioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res 112(B9):B09402. https://doi.org/10.1029/2007jb004934
  • 9. Charlton TR (1989) Stratigraphic correlation across an arc–continent collision zone: Timor and the Australian northwest shelf. Aust J Earth Sci 36:263–274. https://doi.org/10.1080/08120098908729485
  • 10. Collings R, Rietbrock A, Tilmann F, Lange D, Nippres S, Natawidjaja D (2013) Seismic anisotropy in the Sumatra subduction zone. J Geophys Res 118:5372–5390. https://doi.org/10.1002/jgrb.50157
  • 11. Crampin S (1991) Wave propagation through fluid-filled inclusions of various shapes: interpretation of extensive-dilatancy anisotropy. Geophys J Int 107:611–623. https://doi.org/10.1111/j.1365-246X.1991.tb05705.x
  • 12. Crampin S (1994) The fracture criticality of crustal rocks. Geophys J Int 118:428–438. https://doi.org/10.1111/j.1365-246X.1994.tb03974.x
  • 13. Curray JR (1989) The Sunda arc: a for oblique plate convergence. Neth J Sea Res 24:131–140. https://doi.org/10.1016/0077-7579(89)90144-0
  • 14. de Bremond DJ, Jaupart C, Sparks RSJ (1995) Distribution of volcanoes in active margins. J Geophys Res 100:20421–20432. https://doi.org/10.1029/95JB02153
  • 15. Di Leo JF, Wookey J, Hammond JOS, Kendall JM, Kaneshima S, Inoue H, Yamashina T, Harjadi P (2012) Mantle flow in regions of complex tectonics: insights from Indonesia. Geochem Geophys Geosyst 13:Q12008. https://doi.org/10.1029/2012GC004417
  • 16. Ely KS, Sandiford M (2010) Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea. Tectonophysics 483:112–124. https://doi.org/10.1016/j.tecto.2009.08.027
  • 17. Fischer KM, Yang X (1994) Anisotropy in Kuril-Kamchatka subduction zone structure. Geophys Res Lett 21:5–8. https://doi.org/10.1029/93GL03161
  • 18. Fischer KM, Wiens DA (1996) The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet Sci Lett 142:253–260. https://doi.org/10.1016/0012-821X(96)00084-2
  • 19. Fischer KM, Parmentier EM, Stine AR, Wolf ER (2000) Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J Geophys Res-Solid Earth 105:16181–16191. https://doi.org/10.1029/1999JB900441
  • 20. Fleury JM, Pubellier M, Urreiztieta M (2009) Structural expression of forearc crust uplift due to subducting asperity. Lithosphere 113:318–330. https://doi.org/10.1016/j.lithos.2009.07.007
  • 21. Fouch MJ, Fischer KM (1996) Mantle anisotropy beneath northwest Pacific subduction zones. J Geophys Res 101(15):987–16002. https://doi.org/10.1029/96JB00881
  • 22. GEOFON data centre (1993) GEOFON seismic network. Deutsches GeoForschungsZentrum GFZ. Other/Seismic Network. https://doi.org/10.14470/TR560404
  • 23. Gerst A, Savage MK (2004) Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool. Science 306(5701):1543–1547
  • 24. Gledhill K, Stuart G (1996) Seismic anisotropy in the fore-arc region of the Hikurangi subduction zone, New Zealand. Phys Earth Planet Inter 95:211–225. https://doi.org/10.1016/0031-9201(95)03117-0
  • 25. Greve SM, Savage MK, Hofmann SD (2008) Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand. Tectonophysics 462:7–21. https://doi.org/10.1016/j.tecto.2007.07.011
  • 26. Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–434. https://doi.org/10.1016/S1367-9120(01)00069-4
  • 27. Hammond JOS, Wookey J, Kaneshima S, Inoue H, Yamashina T, Harjadi P (2010) Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear-wave splitting. Phys Earth Planet Inter 178:189–201. https://doi.org/10.1016/j.pepi.2009.10.003
  • 28. Helmers J, Sopaheluwaken J, Tjokrosapoetro S, Nila ES (1989) High grade metamorphism related to peridotite emplacement near Atapupu, Timor, with reference to the Kaibobo peridotite on Seram, Indonesia. Neth J Sea Res 24:357–371. https://doi.org/10.1016/0077-7579(89)90161-0
  • 29. Hiramatsu Y, Ando M, Ishikawa Y (1997) ScS wave splitting of deep earthquakes around Japan. Geophys J Int 128:409–424. https://doi.org/10.1111/j.1365-246X.1997.tb01564.x
  • 30. Johnson JH, Savage MK, Townend J (2011) Distinguishing between stress-induced and structural anisotropy at mount ruapehu volcano, New Zealand. J Geophys Res Solid Earth 116(B12):1978–2012. https://doi.org/10.1029/2011JB008308
  • 31. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463. https://doi.org/10.1126/science.1062235
  • 32. Kaneshima S, Silver PG (1995) Anisotropic loci in the mantle beneath central Peru. Phys Earth Planet Inter 88:257–272. https://doi.org/10.1016/0031-9201(94)02981-G
  • 33. Karalliyadda SC, Savage MK (2013) Seismic anisotropy and lithospheric deformation of the plate-boundary zone in South Island, New Zealand: inferences from local S-wave splitting. Geophys J Int 193:507–530. https://doi.org/10.1093/gji/ggt022
  • 34. Karato S (2004) Mapping water content in the upper mantle. In: Eiler J (ed) Inside the subduction factory. American Geophysical Union, Washington, D.C
  • 35. Karato S, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Plant Sci 36:59–95. https://doi.org/10.1146/Annurev.Earth.36.031207.124120
  • 36. Kaye SJ (1989) The structure of Eastern Indonesia: an approach via Gravity and other geophysical methods. Ph. D. Thesis, University of London
  • 37. Long MD (2013) Constraints on subduction geodynamics from seismic anisotropy. Rev Geophys 51:76–112. https://doi.org/10.1002/rog.20008
  • 38. Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318. https://doi.org/10.1126/science.1150809
  • 39. Long MD, Silver PG (2009) Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv Geophys 30:407–461. https://doi.org/10.1007/s10712-009-9075-1
  • 40. Long MD, van der Hilst RD (2005) Upper mantle anisotropy beneath Japan from shear wave splitting. Phys Earth Planet Inter 151:206–222. https://doi.org/10.1016/j.pepi.2005.03.003
  • 41. Long MD, van der Hilst RD (2006) Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Phys Earth Planet Inter 155:300–312. https://doi.org/10.1016/j.pepi.2006.01.003
  • 42. Lueschen E, Mueller C, Kopp H, Engels M, Lutz R, Planert L, Shulgin A, Djajadihardja Y (2011) Structure, evolution and tectonic activity at the Eastern Sunda forearc, Indonesia, from marine seismic investigations. Tectonophysics 508:1–4. https://doi.org/10.1016/j.tecto.2010.06.008
  • 43. Mardia KV (1972) Statistics of directional data. Academic Press, London and New York
  • 44. McCaffrey R, Molnar P, Roecker SW (1985) Microearthquake seismicity and fault plane solutions related to arc-continent collision in the Eastern Sunda arc, Indonesia. J Geophys Res 90:4511–4528. https://doi.org/10.1029/JB090iB06p04511
  • 45. Miller MS, Allam A, Becker TW, Di Leo JF, Wookey J (2013) Constraints on the tectonic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis. Earth Planet Sci Lett 375:234–243. https://doi.org/10.1016/j.epsl.2013.05.036
  • 46. Nishimura S, Suparka S (1986) Tectonic development of East Indonesia. J Southest Asian Earth Sci 1:45–57. https://doi.org/10.1016/0743-9547(86)90006-1
  • 47. Nugroho H, Harris RA, Amin WL, Bilal M (2009) Plate boundary reorganization in the active Banda Arc–continent collision: insights from new GPS measurements. Tectonophysics 479:52–65. https://doi.org/10.1016/j.tecto.2009.01.026
  • 48. Nugraha AD, Ash-Shiddiqi H, Widiyantoro S, Ramdhan M, Wandono S, Handayani T, Nugroho H (2015) Preliminary results of teleseismic double-difference relocation of earthquakes around Indonesian archipelago region. AIP Conf Proc. https://doi.org/10.1063/1.4915010
  • 49. Okada T, Matsuzawa T, Hasegawa A (1995) Shear-wave polarisation anisotropy beneath the north-eastern part of Honshu, Japan. Geophys J Int 123:781–797. https://doi.org/10.1111/j.1365-246X.1995.tb06890.x
  • 50. Prawirodirdjo L, Bock Y (2004) Instantaneous global plate motion model from 12 years of continuous GPS observations. J Geophys Res 109:B08405. https://doi.org/10.1029/2003JB002944
  • 51. Rumpker G, Silver PG (1998) Apparent shear–wave splitting parameters in the presence of vertically varying anisotropy. Geophys J Int 135:790–800. https://doi.org/10.1046/j.1365-246X.1998.00660.x
  • 52. Savage MK (1999) Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys 37:65–106. https://doi.org/10.1029/98RG02075
  • 53. Savage MK, Peppin WA, Vetter UR (1990) Shear wave anisotropy and stress direction in and near long valley Caldera, California, 1979–1988. J Geophys Res 95:11165–11177. https://doi.org/10.1029/JB095iB07p11165
  • 54. Savage MK, Wessel A, Teanby NA, Hurst AW (2010) Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J Geophys Res 115:B12321. https://doi.org/10.1029/2010JB007722
  • 55. Shih XR, Meyer RP, Schneider JF (1991) Seismic anisotropy above a subducting plate. Geology 19:807–810. https://doi.org/10.1130/0091-7613(1991)019<0807:SAAASP>2.3.CO;2
  • 56. Shulgin A, Kopp H, Mueller C, Lueschen E, Planert L, Engels M, Flueh ER, Krabbenhoeft A, Djajadihardja Y (2009) Sunda–Banda arc transition: incipient continent–island arc collision (northwest Australia). Geophys Res Lett 36:L10304. https://doi.org/10.1029/2009GL037533
  • 57. Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432. https://doi.org/10.1146/annurev.earth.24.1.385
  • 58. Silver P, Chan G (1991) Shear wave splitting and subcontinental mantle deformation. J Geophys Res 96:16429–16454. https://doi.org/10.1029/91JB00899
  • 59. Silver PG, Savage MK (1994) The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophys J Int 119:949–963. https://doi.org/10.1111/j.1365-246X.1994.tb04027.x
  • 60. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962. https://doi.org/10.1126/science.277.5334.1956
  • 61. Syuhada S, Hananto ND, Abdullah CI, Puspito NT, Anggono T, Yudistira T (2016) Crustal structure along Sunda-Banda Arc transition zone from teleseismic receiver functions. Acta Geophys 64:2020–2050. https://doi.org/10.1515/acgeo-2015-0098
  • 62. Syuhada S, Hananto ND, Abdullah CI, Puspito NT, Anggono T, Yudistira T, Ramdhan M (2017) Crustal Anisotropy along the Sunda–Banda Arc transition zone from shear wave splitting measurements. J Geodyn 103:1–11. https://doi.org/10.1016/j.jog.2016.10.006
  • 63. Teanby NA, Kendall JM, van der Baan M (2004) Automation of shear-wave splitting measurements using cluster analysis. Bull Seismol Soc Am 94:453–463. https://doi.org/10.1785/0120030123
  • 64. Vinnik LP, Kosarev GL, Makeyeva LI (1984) Anisotropy of the lithosphere from the observations of SKS and SKKS. Proc Acad Sci USSR 278:1335–1339
  • 65. Wensink H (1994) Paleomagnetism of rocks from Sumba: tectonic implications since the late Cretaceous. J Southest Asian Earth Sci 9:51–65. https://doi.org/10.1016/0743-9547(94)90065-5
  • 66. Wirth E, Long MD (2010) Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones. Phys Earth Planet Inter 181:141–154. https://doi.org/10.1016/j.pepi.2010.05.006
  • 67. Yang X, Fischer KM, Abers GA (1995) Seismic anisotropy beneath the Shumagin Islands segment of the Aleutian-Alaska subduction zone. J Geophys Res 100:18165–18177. https://doi.org/10.1029/95JB01425
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf8603d0-c4fa-4976-9018-b13dedd6b93d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.