PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer model of a small size satellite on geostationary orbit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study is to compute an approached satellite thermal model to be able to estimate the heat transfer and the maximum temperature through the harmonic gear for small size geostationary satellite. We use finite element method using known data with Nastran In-CAD FEM software. The presented results show temperature gradients compatible with experimental information. Though the results are not correlated with dedicated tests, they seems to be in line with what can be found in literature. The paper use these information in dedicated analysis related to impact of temperature gradient in precision mechanism. The second purpose of the study is to show that simplified tools and methods allows to reach results sufficient for preliminary analysis. The space business is changing fast with growing private companies that are challenging conservative space standards. A simplified analysis allowing to reduce cost and increase competitiveness is presented.
Twórcy
  • PIAP Space Sp. z o. o., Jerozolimskie 202, Warsaw 02-486, Poland
  • PIAP Space Sp. z o. o., Jerozolimskie 202, Warsaw 02-486, Poland
  • PIAP Space Sp. z o. o., Jerozolimskie 202, Warsaw 02-486, Poland.
  • PIAP Space Sp. z o. o., Jerozolimskie 202, Warsaw 02-486, Poland
Bibliografia
  • [1] R. D. Karam, Satellite thermal control for systems engineers, Progress in astronautics and aeronautics, vol. 181, American Institute of Aeronautics and Astronautics: Reston, Va, 1998.
  • [2] G. Sebestyen, S. Fujikawa, N. Galassi, and A. Chuchra, Low Earth Orbit Satellite Design, Springer: New York, NY, 2018.
  • [3] G. C. Birur, G. Siebes, and T. D. Swanson. “Spacecraft Thermal Control”. In: R. A. Meyers, ed., Encyclopedia of Physical Science and Technology (Third Edition), 485–505. Academic Press, New York, 2003.
  • [4] R. Gubby and J. Evans, “Space environment effects and satellite design”, Journal of Atmospheric and Solar-Terrestrial Physics, vol. 64, no. 16, 2002, 1723–1733 DOI: 10.1016/S1364-6826(02)00122-0.
  • [5] D. Gilmore, Spacecraft Thermal Control Handbook: Fundamental Technologies, The Aerospace Press, 2002 DOI: 10.2514/4.989117.
  • [6] R. Henderson, “Thermal control of spacecraft”. In: P. Fortescue and J. Stark, eds., Spacecraft systems engineering, Wiley, New York, 1995.
  • [7] C. J. Savage. “Thermal control of spacecraft”. In: P. Fortescue, J. Stark, and G. Swinerd, eds., Spacecraft Systems Engineering. 3rd edition, Wiley, New York, 2003.
  • [8] C. J. Savage. “Thermal Control of Spacecraft”. In: Spacecraft Systems Engineering, John Wiley & Sons, 2011, 357–394 DOI: 10.1002/9781119971009.ch11.
  • [9] J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft thermal control, Woodhead Publishing Limited, 2012 DOI: 10.1533/9780857096081.
  • [10] J.-R. Tsai, “Overview of Satellite Thermal Analytical Model”, Journal of Spacecraft and Rockets, vol. 41, no. 1, 2004, 120–125 DOI: 10.2514/1.9273.
  • [11] C. A. Wingate, “Spacecraft thermal control”. In: V. Piscane and R. Moore, eds., Fundamentals of Space Systems, London, 1994, 433–466.
  • [12] Pérez-Grande, A. Sanz-Andrés, C. Guerra, and G. Alonso, “Analytical study of the thermal behaviour and stability of a small satellite”, Applied Thermal Engineering, vol. 29, no. 11, 2009, 2567–2573 DOI: 10.1016/j.applthermaleng.2008.12.038.
  • [13] J. Gaite, A. Sanz-Andrés, and I. Pérez-Grande, “Nonlinear analysis of a simple model of temperature evolution in a satellite”, Nonlinear Dynamics, vol. 58, no. 1, 2009, 405–415 OI: 10.1007/s11071-009-9488-x.
  • [14] J. Gaite, “Nonlinear analysis of spacecraft thermal models”, Nonlinear Dynamics, vol. 65, no. 3, 2011, 283–300 DOI: 10.1007/s11071-010-9890-4.
  • [15] L. Jacques, E. Béchet, and G. Kerschen, “Finite element model reduction for space thermal analysis”, Finite Elements in Analysis and Design, vol. 127, 2017, 6–15 DOI: 10.1016/j.finel.2017.01.001.
  • [16] G. Fernández-Rico, I. Pérez-Grande, A. Sanz-Andres, I. Torralbo, and J. Woch, “Quasi-autonomous thermal model reduction for steady-state problems in space systems”, Applied Thermal Engineering, vol. 105, 2016, 456–466 DOI: 10.1016/j.applthermaleng.2016.03.017.
  • 17. M. A. Gadalla, “Prediction of temperature variation in a rotating spacecraft in space environment”, Applied Thermal Engineering, vol. 25, no. 14, 2005, 2379–2397 DOI: 10.1016/j.applthermaleng.2004.12.018.
  • 18. L. Liu, D. Cao, H. Huang, C. Shao, and Y. Xu, “Thermal-structural analysis for an attitude maneuvering flexible spacecraft under solar radiation”, International Journal of Mechanical Sciences, vol. 126, 2017, 161–170 DOI: 10.1016/j.ijmecsci.2017.03.028.
  • 19. W. Younis, Up and Running with Autodesk Nastran In-CAD 2019: Simulation for Designers, CreateSpace Independent Publishing Platform, 2018.
  • 20. V. Nenarokomov, L. A. Dombrovsky, I. V. Krainova, O. M. Alifanov, and S. A. Budnik, “Identification of radiative heat transfer parameters in multilayer thermal insulation of spacecraft”, International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27, no. 3, 2017, 598–614 DOI: 10.1108/HFF-03-2016-0136.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf84dafb-57a9-4f0e-93f1-878aa7c17c15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.