PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On evaluation of influence coefficients for edge and intermediate boundary elements in 3D problems involving strong field concentrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a tool for accurate evaluation of high field concentrations near singular lines, such as contours of cracks, notches and grains intersections, in 3D problems solved the BEM. Two types of boundary elements, accounting for singularities, are considered: (i) edge elements, which adjoin a singular line, and (ii) intermediate elements, which while not adjoining the line, are still under strong influence of the singularity. An efficient method to evaluate the influence coefficients and the field intensity factors is suggested for the both types of the elements. The method avoids time expensive numerical evaluation of singular and hypersingular integrals over the element surface by reduction to 1D integrals. The method being general, its details are explained by considering a representative examples for elasticity problems for a piecewise homogeneous medium with cracks, inclusions and pores. Numerical examples for plane elements illustrate the exposition. The method can be extended for curvilinear elements.
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 31 poz., wykr., tab., rys.
Twórcy
  • Rzeszow University of Technology, Poland
Bibliografia
  • [1] N.P. Patel and D.S. Sharma, “Composite Structures On the stress concentration around a polygonal cut-out of complex geometry in an infinite orthotropic plate”, Composite Structures, 179, 415‒436, 2017.
  • [2] A.J. Pachoud, P.A. Manso, and A.J.Schleiss, “New parametric equations to estimate notch stress concentration factors at butt welded joints modeling the weld profile with splines”, Engineering Failure Analysis, 72, 11‒24, 2017.
  • [3] T. Davis, D. Healy, A. Bubeck, and R.Walker, “Stress concentrations around voids in three dimensions: The roots of failure”, Journal of Structural Geology, 102, 193‒207, 2017.
  • [4] M. Eskandari-Ghadi, A. Ardeshir-Behrestaghi, and R.Y.S. Pakc, ”Bi-material transversely isotropic half-space containing penny- shaped crack under time-harmonic horizontal loads”, Engineering Fracture Mechanics, 172, 152‒180, 2017.
  • [5] S. Nategh, A. Khojasteh, and M. Rahimian, “Bonded contact of a rigid disk inclusion with a penny-shaped crack in a transversely isotropic solid”, Journal of Engineering Mathematics, 110, 123–146, 2018.
  • [6] V. Maz’ya and B. Plamenevskii, “The coefficients in the asymptotic expansion of solutions of elliptic boundary value problems in domains with conical points”, Math. Nachr., 76, 29‒60, 1977.
  • [7] D.B. Bogy, “Two edge-bonded elastic wedges on different materials and wedge angles under surface tractions”, Journal of Applied Mechanics, 38 (2), 377‒386, 1971.
  • [8] J.P. Dampsey and G.B. Sinclair, “On stress singularities in the plane elasticity of the composite wedge”, J. Elast., 9, 373‒391, 1979.
  • [9] A. Seweryn and Z. Mróz, “A non local stress failure condition for structural elements under multiaxial loading”, Eng. Fracture Mech., 51, 955‒973, 1995.
  • [10] G. Mishuris and G. Kuhn, “Comparative study on an interface crack for different wedge interface models”, Arch. Appl. Mechanics, 71, 764‒780, 2001.
  • [11] G.B. Sinclair, “Stress singularities in classical elasticity”, Appl. Mech. Rev, 57, (4‒5), 251‒297, 385‒439, 2004.
  • [12] V. Blinova and A. Linkov, “A method of finding asymptotic forms at the common apex of elastic wedges”, J. Appl. Math. Mech., 59, 187‒195, 1995.
  • [13] A. Linkov and V. Koshelev, “Multi-wedge points and multiwedge elements in computational mechanics: evaluation of exponent and angular distribution”, Int. J. Solids and Structures, 71, 764‒780, 2005.
  • [14] A. Linkov and L. Rybarska-Rusinek, “Numerical method and models for anti-plane strain of a system with thin elastic wedge”, Arch. Appl. Mech., 78, 821‒831, 2008.
  • [15] A. Linkov and L. Rybarska-Rusinek, “Plane elasticity problem for a multi-wedge system with a thin wedge”, Int. J. Solids and Structures, 47, 3297‒3304, 2010.
  • [16] A. Linkov and L. Rybarska-Rusinek, “Interface conditions simulating influence of a thin elastic wedge with smooth contacts”, Arch. Appl. Mech., 81, 1203‒1214, 2011.
  • [17] A. Linkov and L. Rybarska-Rusinek, “Evaluation of stress concentration in multi-wedge systems with functionally graded wedges”, Int. J. Eng. Sci., 61, 87‒93, 2012.
  • [18] E. Rejwer, L. Rybarska-Rusinek, and A. Linkov, “The complex variable fast multipole boundary element method for the analysis of strongly inhomogeneous media”, Eng. Anal. Bound. Elem., 43, 105–116, 2014.
  • [19] H. Li, C. Liu, Y. Mizuta, and M. Kayupov, “Crack edge element of three-dimensional displacement discontinuity method with boundary division into triangular leaf elements”, Comm Numer Meth. Eng., 17(6), 365–78, 2001.
  • [20] L. Rybarska-Rusinek, D. Jaworski, and A. Linkov, “On efficient evaluation of integrals entering boundary equations of 3D potential and elasticity theory”, Journal Math. Appl., 37, 85‒96, 2014.
  • [21] D. Jaworski, A. Linkov, and L. Rybarska-Rusinek, "On solving 3D elasticity problems for inhomogeneous region with cracks, pores and inclusions", Computen and Geotechnics, 71, 295-309, 2016.
  • [22] D.A. Spence and P.W. Sharp, "Self-similar solutions for elasto-hydrodynamic cavity flow", Proc. Royal Soc. London, Series A, 400,289-313,1985.
  • [23] B. Lenoach, "The crack tip solution for hydraulic fracturing in a permeable solid", J. Mech. Phys. Solids, 43,1025-1043,1995.
  • [24] A. Peirce, "Implicit level set algorithms for modelling hydraulic fracture propagation", Phil. Trans. R. Soc. A, 374: 20150423,2016.
  • [25] P.K. Banerjee and R. Butterfiełd, Boundary element methods in engineering science, McGrawHill Book Co., UK, 1981.
  • [26] A. Linkov, "Real and complex hypersingular integrals and in-tegral eąuations in computational mechanics", Demonstratio Mathematica, 28 (4), 759-769, 1995.
  • [27] D. Nikolskiy, M. Zammarchi, S. Mogilevskaya, and A. Sal-yadori, "A Three-dimensional BEM analysis of stress state near a crack-borehole system", Eng. Anal. Bonnd. Elem., 73, 133-143, 2016.
  • [28] K. Pierzyński and Ł. Madej, "Numerical modeling of fracture during nanoindentation of the TiN coatings obtained with the PLD process", Buli. Poi. Ac.: Tech., 61 (4), 973-978, 2013.
  • [29] J. Rice, "A path-independent integral and the approximate analysis of strain concentration by notches and cracks", Journal of Applied Mechanics, 35, 379-386, 1968.
  • [30] A. Linkov, "The particle velocity, speed eąuation and universal asymptotics for the efficient modelling of hydraulic fractures", J. Appl. Math. Mech., 79, 54-63, 2015.
  • [31] B. Carlson, "ATable of elliptic integrals: one ąuadratic factor", Math Comput, 56 (193), 267-280, 1999.
Uwagi
EN
The author appreciate the support of the National Science Centre Poland (Project Number 2015/19/B/ST8/00712).
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf7e6874-177e-44a6-a6c6-a26ed78362e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.