PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of humic acid on the adsorption of selenium by lepidocrocite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selenium (Se) mobility and bioavailability in natural environments are influenced by its adsorption at the aqueous interface of lepidocrocite (Lep), which is significantly affected by humic acid (HA), a common natural organic matter (NOM). This study investigated the mechanisms by which HA influences Se adsorption on Lep, aiming to understand how HA affects Se speciation, distribution, and mobility in natural environments. Batch experiments were conducted using synthetic Lep and HA under varying pH values (4-8) and HA concentrations (10-100 mg C/L). Interactions among HA, Lep, and Se were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Zeta potential and hydrodynamic diameter measurements were also performed to evaluate colloidal stability. HA significantly reduced Se adsorption on Lep by competing for adsorption sites, forming coordination bonds with Se, and altering Lep’s surface charge and hydrophobicity. At higher HA concentrations, dissolved and colloidal Se increased, while particulate Se decreased. Lower pH enhanced Se adsorption due to protonation, whereas higher pH promoted Se mobility. FTIR and SEM analyses confirmed HA’s role in modifying Lep’s surface properties and influencing Se adsorption behavior. HA plays a critical role in modulating Se adsorption on Lep through competitive adsorption, coordination interactions, and surface modification. These mechanisms influence Se speciation, distribution, and mobility, with implications for managing Se bioavailability in agricultural and environmental systems. This study provides insights into the geochemical cycling of Se and offers guidance for optimizing Se-rich agricultural practices.
Słowa kluczowe
Rocznik
Strony
91--100
Opis fizyczny
Bibliogr. 37 poz., fot., rys., wykr.
Twórcy
  • College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China
autor
  • College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China
  • Ecole Normale Sup´erieure, D´epartement des Sciences Naturelles, Centre de Recherche en Sciences et de Perfectionnement Professionnel, Boulevard Mwezi Gisabo, B.P.: 6983 Bujumbura, Burundi
autor
  • College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China
autor
  • Guizhou Lvxing Qingyuan Environmental Protection Co., Ltd., Guiyang 550002, PR China
Bibliografia
  • 1. Alsaiari, R., Shedaiwa, I., Al-Qadri, F.A., Musa, E.M., Alqahtani, H., Alkorbi, F., Alsaiari, N.A. & Mohamed, M.M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50,1, pp. 3-12, DOI:10.24425/aep.2024.149427.
  • 2. Bao, Y., Bolan, N.S., Lai, J., Wang, Y., Jin, X., Kirkham, M.B., Wu, X., Fang, Z., Zhang, Y. & Wang, H. (2022). Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 52, 22, pp. 4016-4037, DOI:10.1080/10643389.2021.1974766.
  • 3. Bogusz, P., Zimnoch, U., Brodowska, M.S. & Michalak, J. (2024). The trend of changes in soil organic carbon content in Poland over recent years. Archives of Environmental Protection, 50,1, pp. 35-44. DOI:10.24425/aep.2024.149430.
  • 4. Bu, H., Lei, Q., Tong, H., Liu, C., Hu, S., Xu, W., Wang, Y., Chen, M. & Qiao, J. (2023). Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. Science of the Total Environment, 861, pp. 160624. DOI:10.1016/j.scitotenv.2022.160624.
  • 5. Cheng, B., Liu, J., Li, X., Yue, L., Cao, X., Li, J., Wang, C. & Wang, Z. (2024). Bioavailability of selenium nanoparticles in soil and plant: the role of particle size. Environmental and Experimental Botany, 220, pp. 105682. DOI:10.1016/j.envexpbot.2024.105682.
  • 6. Das, S., Jim Hendry, M. & Essilfie-Dughan, J. (2013). Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Applied Geochemistry, 28, pp. 185-193, DOI:10.1016/j.apgeochem.2012.10.026.
  • 7. Dinh, Q.T., Li, Z., Tran, T.A.T., Wang, D. & Liang, D. (2017). Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere, 184, pp. 618-635, DOI:10.1016/j.chemosphere.2017.06.034.
  • 8. Fan, J., Zhao, G., Sun, J., Hu, Y. & Wang, T. (2019). Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. Science of the Total Environment, 684, pp. 476-485. DOI:10.1016/j.scitotenv.2019.05.246.
  • 9. Favorito, J.E., Eick, M.J. & Grossl, P.R. (2018). Adsorption of Selenite and Selenate on Ferrihydrite in the Presence and Absence of Dissolved Organic Carbon. Journal of Environmental Quality, 47,1, pp. 147-155, DOI:10.2134/jeq2017.09.0352.
  • 10. Francisco, P.C.M., Sato, T., Otake, T., Kasama, T., Suzuki, S., Shiwaku, H. & Yaita, T. (2018). Mechanisms of Se(IV) Co-precipitation with Ferrihydrite at Acidic and Alkaline Conditions and Its Behavior during Aging. Environmental Science & Technology, 52, 8, pp. 4817-4826, DOI:10.1021/acs.est.8b00462.
  • 11. Jia, Y., Luo, T., Yu, X.-Y., Sun, B., Liu, J.-H. & Huang, X.-J. (2013). Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(v). RSC Advances, 3, 36, pp. 15805-15811, DOI:10.1039/C3RA40980E.
  • 12. Kumpulainen, S., von der Kammer, F., Hofmann, T. (2008). Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Research, 42,8, pp. 2051-2060, DOI: 10.1016/j.watres.2007.12.015.
  • 13. Kusmierek, K., Dabek, L. & Swiatkowski, A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49,1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  • 14. Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J. & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, pp. 69-79. DOI:10.1016/j.geoderma.2017.02.019.
  • 15. Olaetxea, M., De Hita, D., Garcia, C.A., Fuentes, M., Baigorri, R., Mora, V., Garnica, M., Urrutia, O., Erro, J., Zamarreño, A.M., Berbara, R.L. & Garcia-Mina, J.M. (2018). Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Applied Soil Ecology, 123, pp. 521-537. DOI:10.1016/j.apsoil.2017.06.007.
  • 16. Park, J.H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N. & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185,2, pp. 549-574. DOI:10.1016/j.jhazmat.2010.09.082.
  • 17. Peng, J., Fu, F., Ye, C. & Tang, B. (2022). Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging. Environmental Pollution, 293, pp. 118552. DOI:10.1016/j.envpol.2021.118552.
  • 18. Pintor, A.M.A., Vieira, B.R.C., Brandão, C.C., Boaventura, R.A.R. & Botelho, C.M.S. (2020). Complexation mechanisms in arsenic and phosphorus adsorption onto iron-coated cork granulates. Journal of Environmental Chemical Engineering, 8, 5, pp. 104184, DOI:10.1016/j.jece.2020.104184.
  • 19. Qin, H.-B., Zhu, J.-M. & Su, H. (2012). Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere, 86, 6, pp. 626-633, DOI:10.1016/j.chemosphere.2011.10.055.
  • 20. Qin, L., Wang, M., Sun, X., Yu, L., Wang, J., Han, Y. & Chen, S. (2023). Formation of ferrihydrite induced by low pe+pH in paddy soil reduces Cd uptake by rice: Evidence from Cd isotope fractionation. Environmental Pollution, 328, pp. 121644, DOI:10.1016/j.envpol.2023.121644.
  • 21. Rahimi, S., Soleimani, M. & Azadmehr, A.R. (2021). Performance Evaluation of Synthetic Goethite and Lepidocrocite Nanoadsorbents for the Removal of Aniline from a Model Liquid Fuel through Kinetic and Equilibrium Studies. Energy & Fuels, 35, 13, pp. 10659-10668, DOI:10.1021/acs.energyfuels.1c00474.
  • 22. Ros, G.H., van Rotterdam, A.M.D., Bussink, D.W. & Bindraban, P.S. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil, 404, 1, pp. 99-112. DOI:10.1007/s11104-016-2830-4.
  • 23. Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Martí, V. & Duro, L. (2008). Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. Journal of Hazardous Materials, 150, 2, pp. 279-284. DOI:10.1016/j.jhazmat.2007.04.098.
  • 24. Sefatlhi, K.L., Ultra, V.U., Stephen, M., Oleszek, S. & Manyiwa, T. (2024). Adsorption of nitrate and phosphate ions using ZnCl2-activated biochars from phytoremediation biomasses. Archives of Environmental Protection, 50, 3, pp. 65-83. DOI:10.24425/aep.2024.151687.
  • 25. Siéliéchi, J.M., Lartiges, B.S., Kayem, G.J., Hupont, S., Frochot, C., Thieme, J., Ghanbaja, J., d’Espinose de la Caillerie, J.B., Barrès, O., Kamga, R., Levitz, P. & Michot, L.J. (2008). Changes in humic acid conformation during coagulation with ferric chloride: Implications for drinking water treatment. Water Research, 42, 8, pp. 2111-2123, DOI:10.1016/j.watres.2007.11.017.
  • 26. Supriatin, S., Weng, L. & Comans, R.N.J. (2015). Selenium speciation and extractability in Dutch agricultural soils. Science of the Total Environment, 532, pp. 368-382. DOI:10.1016/j.scitotenv.2015.06.005.
  • 27. Terashima, M., Endo, T., Kimuro, S., Beppu, H., Nemoto, K. & Amano, Y. (2023). Iron-induced association between selenium and humic substances in groundwater from deep sedimentary formations. Journal of Nuclear Science and Technology, 60, 4, pp. 374-384. DOI:10.1080/00223131.2022.2111376.
  • 28. Tolu, J., Thiry, Y., Bueno, M., Jolivet, C., Potin-Gautier, M. & Le Hécho, I. (2014). Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Science of the Total Environment, 479-480, pp. 93-101. DOI:10.1016/j.scitotenv.2014.01.079.
  • 29. Weng, L., Vega, F.A., Supriatin, S., Bussink, W. & Riemsdijk, W.H.V. (2011). Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability. Environmental Science, Technology, 45,1, pp. 262-267. DOI:10.1021/es1016119.
  • 30. Xie, Y., Dong, H., Zeng, G., Zhang, L., Cheng, Y., Hou, K., Jiang, Z., Zhang, C. & Deng, J. (2017). The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: The roles of solution chemistry. Journal of Hazardous Materials, 338, pp. 306-312. DOI:10.1016/j.jhazmat.2017.05.053.
  • 31. Xing, B., Ouyang, M., Graham, N. & Yu, W. (2020). Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: Mechanism and application. Chemical Engineering Journal, 393, pp. 124730. DOI:10.1016/j.cej.2020.124730.
  • 32. Ying, H. & Zhang, Y. (2019). Systems Biology of Selenium and Complex Disease. Biological Trace Element Research, 192, 1, pp. 38-50. DOI:10.1007/s12011-019-01781-9.
  • 33. Yoon, I.-H., Kim, K.-W., Bang, S. & Kim, M.G. (2011). Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 104,1, pp. 185-192. DOI:10.1016/j.apcatb.2011.02.014.
  • 34. Yuan, Z., Su, R., Ma, X., Yu, L., Pan, Y., Chen, N., Chernikov, R., Cheung, L.K.L., Deevsalar, R., Tunc, A., Wang, L., Zeng, X., Lin, J. & Jia, Y. (2023). Direct immobilization of Se(IV) from acidic Se(IV)-rich wastewater via ferric selenite Co-precipitation. Journal of Hazardous Materials, 460, pp. 132346. DOI:10.1016/j.jhazmat.2023.132346.
  • 35. Zhang, H., Xie, S., Bao, Z., Tian, H., Carranza, E.J.M., Xiang, W., Yao, L. & Zhang, H. (2020). Underlying dynamics and effects of humic acid on selenium and cadmium uptake in rice seedlings. Journal of Soils and Sediments, 20, 1, pp. 109-121. DOI:10.1007/s11368-019-02413-4.
  • 36. Zhang, J., Wang, X., Zhan, S., Li, H., Ma, C. & Qiu, Z. (2021). Synthesis of Mg/Al-LDH nanoflakes decorated magnetic mesoporous MCM-41 and its application in humic acid adsorption.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf735e4a-0db7-4f64-b2b0-68a8bb4c642b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.