PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concept of in-Oil Project Based on Bioconversion of by-Products From Food Processing Industry

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
More than 30% of the world’s food production is wasted. Organic waste and residues are produced in a variety of sectors, including agriculture, food industry and forestry. Residues and waste are generated throughout the entire food production and use cycle: surplus food production, processing and distribution, and consumption. Some food that has not been consumed should be managed. Bioconversion using insects provides the opportunity to produce feed and energy using by-products of the agro-food industry. The aim of the work was to present the concept of “IN OIL: an innovative method for the bioconversion of by-products from food processing industry” under the project LIDER VII (co-financed by the National Centre for Research and Development). Project IN OIL is being implemented at the Poznań University of Life Sciences. IN-OIL’s main assumption is combining two ideas – waste into energy and waste into feed. The developed method will reduce the adverse impact of unused food on the environment by using ReFood products in insect feeding (Hermetia illucens). H. illucens (Black Soldier Fly) is a Diptera characterized by a very high index of growth, and rich source of fats and proteins. The main assumption of the project is based on the introduction of by-products from the food processing industry to feeding with larvae of H. illucens. Biomass of insect larvae will then be processed into products that will be used for feed and energy purposes.
Słowa kluczowe
Rocznik
Strony
180--185
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
Bibliografia
  • 1. Alzate T L.M., González D., Hincapié S., Cardona S B.L., Londoño-Londoño J., Jiménez-Cartagena C. 2017. The profile of bioactive substances in ten vegetable and fruit by-products from a food supply chain in Colombia. Sustainable Production and Consumption 9, 37–43.
  • 2. Brancoli P., Rousta K., Bolton K. 2017. Life cycle assessment of supermarket food waste. Resources, Conservation and Recycling 118, 39–46.
  • 3. Chodkowska-Miszczuk J., Szymańska D. 2013. Agricultural biogas plants – A chance for diversification of agriculture in Poland. Renewable and Sustainable Energy Reviews 20, 514–518.
  • 4. Ciesielczuk T., Poluszyńska J., Rosik-Dulewska C. 2017. Homemade slow-action fertilizers, as an economic solution for organic food production. Journal of Ecological Engineering 18(2), 78–85.
  • 5. Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., Cyplik P., Czekała W., Jóżwiakowski K. 2016. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 115(2), 1495–1502.
  • 6. Cohen B. 2017. Modelling approaches for greenhouse gas emissions projections from the waste sector. Sustainable Production and Consumption 10, 15–20.
  • 7. Czekała W., Pilarski K., Dach J., Janczak D., Szymańska M. 2012. Analysis of management possibilities for digestate from biogas plant (in Polish). Technika Rolnicza Ogrodnicza Leśna 4, 13–15.
  • 8. Czekała W. Lewicki A., Janczak D. 2014. Problems concerning organic waste classification (in Polish). Przegląd Prawa Ochrony Środowiska 3, 117–128.
  • 9. Czekała W., Dach, J., Czekała J. 2015. Operational possibilities of a biogas plant at the brewery under polish conditions. Proceedings of the 2nd International Conference on Energy & Environment: Bringing Together Engineering and Economics, 520–525.
  • 10. Czekała W., Smurzyńska A., Cieślik M., Boniecki P., Kozłowski K. 2016a. Biogas efficiency of selected fresh fruit covered by the Russian embargo. Energy And Clean Technologies Conference Proceedings SGEM 2016, VOLIII, 227–233.
  • 11. Czekała W., Malińska K., Cáceres R., Janczak D., Dach J., Lewicki A. 2016b. Co-composting of poultry manure mixtures amended with biochar – The effect of biochar on temperature and C-CO2 emission. Bioresource Technology 200, 921–927.
  • 12. Fisgativa H., Tremier A., Dabert P. 2016. Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Management 50, 264–274.
  • 13. Food and Agriculture Organization of the United Nations. 2013. Food wastage footprint Impacts on natural resources – summary report. ISBN 978–92–5-107752–8.
  • 14. Food and Agriculture Organization of the United Nations. 2014. Mitigation of food wastage – Social costs and benefits. ISBN 978–92–5-108511–0.
  • 15. Garcia-Garcia G., Woolley E., Rahimifard S. Optimising Industrial Food Waste Management. Procedia Manufacturing 8, 432–439.
  • 16. Gizińska-Górna M., Czekała W., Jóźwiakowski K., Lewicki A., Dach J., Marzec M., Pytka A., Janczak D., Kowalczyk-Juśko A., Listosz A. 2016. The possibility of using plants from hybrid constructed wetland wastewater treatment plants for energy purposes. Ecological Engineering 95, 534–541.
  • 17. Kostecka J., Konieczna K., Cunha L.M. 2017. Evaluation of insect-based food acceptance by representatives of polish consumers in the context of natural resources processing retardation. Journal of Ecological Engineering 18(2), 166–174.
  • 18. Nabavi-Pelesaraei A., Bayat R., Hosseinzadeh- Bandbafha H., Afrasyabi H., Berrada A. 2017. Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 154, 602–613.
  • 19. Li Y., Jin Y., Li J. 2016. Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment. Energy 98, 155–167.
  • 20. Lucifero N. 2016. Food Loss and Waste in the EU Law between sustainability of well-being and the implications on food system and on environment. Agriculture and Agricultural Science Proc. 8, 282–289.
  • 21. Menozzi D., Sogari G., Veneziani M., Simoni E., Mora C. 2017. Eating novel foods: An application of the Theory of Planned Behaviour to predict the consumption of an insect-based product. Food Quality and Preference, 59, 27–34.
  • 22. Rehman K., Rehman A., Cai M., Zheng L., Xiao X., Somroo A.A., Wang H., Li W., Yu Z., Zhang J. 2017. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). Journal of Cleaner Production 154, 366–373.
  • 23. Salemdeeb R., zu Ermgassen E.K.H.J., Kim M.H., Balmford A., Al-Tabbaa A. 2017. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. Journal of Cleaner Production 140(2), 871–880.
  • 24. Smurzyńska A., Czekała W., Lewicki A., Cieślik M., Kozłowski K., Janczak D. 2016. The biogas output of vegetables utilized in the polish market due to the introduction of the Russian embargo (in Polish). Technika Rolnicza Ogrodnicza Leśna 6, 24–27.
  • 25. Voelklein M.A., Shea R.O., Jacob A., Murphy J.D. 2017. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy 121,185–192.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf6d04fb-1fbd-4f2a-9778-7ee6d46faf71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.