PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Energy Components Modifications on the Crashworthiness of Thin-Walled Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thin-walled structures that serve as energy absorbers are widely used in the automotive industry, and it is well-known that they deform in a specific way under dynamic loading, forming plastic hinges along the yield line. The dynamic impact of these structures causes various phenomena that affect the formation of folds and, consequently, the dynamic response of the structure. The force-shortening curve, which is based on the unified crush efficiency indicators, is a key factor in determining the dynamic response of the structure. While there have been many studies on energy absorbers under static or quasi-static loading conditions, the effect of changing kinetic energy components (mass and velocity) on the obtained crush efficiency indicators is not as well understood. This article presents the results of experimental tests and nonlinear numerical simulations for eleven different initial conditions of the crashworthiness analysis. The tests showed a significant effect of changing the velocity and mass of the striker on the results obtained. Additionally, the nonlinear effect of the change in the velocity of the tup with respect to the peak force and total efficiency was demonstrated.
Słowa kluczowe
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics
Bibliografia
  • 1. Ratajczak M, Ptak M, Dymek M, Kubacki R, de Sousa RJA, Sbriglio C, Kwiatkowski A. Computational modelling and biomechanical analysis of age-related craniocerebral injuries: Insights into bridging veins. Appl. Sci. 2024;14:2681.
  • 2. Ptak M, Dymek M, Sawicki M, Fernandes F.A.O, Wnuk M, Wilhelm J, Ratajczak M, Witkowska D, Kwiatkowski A, Poźniak B, Kubicki K, Tikhomirov M, Druszcz A Chybowski L. Experimental and computational approach to human brain modelling – aHEAD. Arch. Civ. Mech. Eng. 2023; 23:1–18.
  • 3. Alardhi M, Sequeira R, Fahed M, Alrajhi J, Alkhulaifi K. Assessing the crashworthiness analysis on frontal and corner impacts of vehicle on street poles using FEA. Appl. Sci. 2022; 12.
  • 4. Li K, Feng Y, Gao Y, Zheng H, Qiu H. Crashworthiness optimization design of aluminum alloy thin-walled triangle column based on bioinspired strategy. Materials (Basel). 2020; 13: 666.
  • 5. Rogala M, Gajewski J, Górecki M. Study on the effect of geometrical parameters of a hexagonal trigger on energy absorber performance using ANN. Materials (Basel). 2021; 14: 5981.
  • 6. Rogala M, Gajewski J, Ferdynus M. The effect of geometrical non-linearity on the crashworthiness of thin-walled conical energy-absorbers. Materials (Basel). 2020; 13: 4857.
  • 7. Al-Abbas B, Abdul Rasoul ZMR, Hasan D, Rasheed SE. Experimental study on ultimate strength of steel tube column filled with reactive powder concrete. Civ. Eng. J. 2023; 9: 1344–1355.
  • 8. Ge J, Luo T, Qiu J. Experimental investigation of the dynamic responses of thin-walled and foam-filled steel tubes subjected to repeated impacts. Materials (Basel). 2024; 17: 1018.
  • 9. Wan L, Hu D, Zhang H. Crashworthiness study of aluminum foam-filled tubular lattice structures based on triply periodic minimal surface metamaterials under lateral crushing. Thin-Walled Struct. 2024; 197: 111616.
  • 10. Wysmulski P. Numerical and experimental study of crack propagation in the tensile composite plate with the open hole. Adv. Sci. Technol. Res. J. 2023; 17: 249–261.
  • 11. Wysmulski P, Mieczkowski G. Influence of size of open hole on stability of compressed plate made of carbon fiber reinforced polymer. Adv. Sci. Technol. Res. J. 2024; 18: 238–247.
  • 12. Rozylo P, Rogala M, Pasnik J. Buckling analysis of thin-walled composite structures with rectangular cross-sections under compressive load. Materials (Basel). 2023; 16.
  • 13. Rogala M, Gajewski J. Crashworthiness analysis of thin-walled square columns with a hole trigger. Materials (Basel). 2023; 16: 4196.
  • 14. Ferdynus M, Gajewski J. Identification of crash-worthiness indicators of column energy absorbers with triggers in the form of cylindrical embossing on the lateral edges using artificial neural networks. Eksploat. i Niezawodn. 2022; 24: 805–821.
  • 15. Ming S, Zhou C, Li T, Song Z, Wang B. Energy absorption of thin-walled square tubes designed by kirigami approach. Int. J. Mech. Sci. 2019; 157–158: 150–164.
  • 16. Rogala M, Gajewski J. Analysis of the triggering mechanism of the square thin-walled absorber. Adv. Sci. Technol. Res. J. 2023;17: 206–216.
  • 17. Wu Y, Fang J, He Y, Li W. Crashworthiness of hierarchical circular-joint quadrangular honeycombs. Thin-Walled Struct. 2018; 133: 180–191.
  • 18. Santhosh Kumar V, Manikandaraja G. Numerical study on energy absorbing characteristics of thinwalled tube under axial and oblique impact. Alexandria Eng. J. 2016; 55: 187–192.
  • 19. Yang W, Meyers MA, Ritchie RO. Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. 2019.
  • 20. Doodi R, Gunji B.M. Prediction and experimental validation approach to improve performance of novel hybrid bio-inspired 3D printed lattice structures using artificial neural networks. Sci. Rep. 2023; 13: 1–17.
  • 21. Xing J, Zhao J, Niu Q, Zhang T, Zhang C, Zhang Y, Wang W, Yan S, Lu X. Crashworthiness design and optimization of bamboo-inspired tube with gradient multi-cells. Thin-Walled Struct. 2023; 191: 111034.
  • 22. Mohammed Sahib M, Kovács G. Multi-objective optimization of composite sandwich structures using artificial neural networks and genetic algorithm. Results Eng. 2024; 21.
  • 23. Gao Y, Chen X, Wei Y. Graded honeycombs with high impact resistance through machine learning-based optimization. Thin-Walled Struct. 2023; 188: 110794.
  • 24. Rogala M, Tuchowski W, Czarnecka-Komorowska D, Gawdzińska K. Analysis and assessment of aluminum and aluminum-ceramic foams structure. Adv. Sci. Technol. Res. J. 2022; 16: 287–297.
  • 25. Ma W, Almasifar N, Amini R, Ourang A, Mahariq I, Alhoee J. Crashworthiness evaluation and optimization of full polypropylene sandwich tubes under low-velocity impact based on machine learning algorithms. Structures 2024; 60: 105901.
  • 26. Zhang J, Wu C, Gao Q, Zhang K, Wang L, Wang T, Ma Ch, Qiu R. Crashworthiness analysis of dragonfly inspired tubes under multiple load cases. Int. J. Mech. Sci. 2024;271:109085.
  • 27. Andrew JJ, Alhashmi H, Schiffer A, Kumar S, Deshpande VS. Energy absorption and self-sensing performance of 3D printed CF/PEEK cellular composites. Mater. Des. 2021; 208: 109863.
  • 28. Bogahawaththa M, Mohotti D, Hazell P.J, Wang H, Wijesooriya K, Lee CK. Energy absorption and mechanical performance of 3D printed Menger fractal structures. Eng. Struct. 2024; 305: 117774.
  • 29. Liang H, Liu B, Pu Y, Sun H, Wang D. Crashworthiness analysis of variable thickness CFRP/Al hybrid multi-cell tube. Int. J. Mech. Sci. 2024; 266: 108959.
  • 30. Jonak J, Karpiński R, Wójcik A. Numerical analysis of undercut anchor effect on rock. J. Phys. Conf. Ser. 2021; 2130: 012011.
  • 31. Jonak J, Karpiński R, Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J. Phys. Conf. Ser. 2021; 2130: 012012.
  • 32. Wysmulski P, Falkowicz K, Filipek P. Buckling state analysis of compressed composite plates with cutout. Compos. Struct. 2021; 274: 114345.
  • 33. Wysmulski P, Debski H, Falkowicz K. Sensitivity of compressed composite channel columns to eccentric loading. Materials (Basel). 2022; 15: 6938.
  • 34. Jonak J, Karpiński R, Wójcik A. Influence of anchor depth and friction coefficient between anchor and rock on the trajectory of rock masses detachment. Adv. Sci. Technol. Res. J. 2023; 17: 290–298.
  • 35. Jonak J, Karpiński R, Wójcik A, Siegmund M. The effect of undercut anchor diameter on the rock failure cone area in pullout tests. Adv. Sci. Technol. Res. J. 2022; 16: 261–270.
  • 36. Gjukaj A, Salihu F, Muriqi A, Cvetanovski P. Numerical behavior of extended end-plate bolted connection under monotonic loading. HighTech Innov. J. 2023; 4: 294–308.
  • 37. Both I, Burca M, Benzar S, Ungureanu V. Numerical study on the behaviour of built-up cold-formed steel corrugated web beams end connections. Civ. Eng. J. 2023; 9: 770–786.
  • 38. Rogala M, Gajewski J, Gawdzińska K. Crashworthiness analysis of thin-walled aluminum columns filled with aluminum–silicon carbide composite foam. Compos. Struct. 2022; 299: 116102.
  • 39. Pugsley A. The large-scale crumpling of thin cylindrical columns. Q. J. Mech. Appl. Math. 1960; 13: 1–9.
  • 40. Wierzbicki T, Sinmao M.V. A simplified model of Brazier effect in plastic bending of cylindrical tubes. Int. J. Press. Vessel. Pip. 1997;
  • 41. Jones N. Several phenomena in structural impact and structural crashworthiness. Eur. J. Mech. A/Solids 2003; 22: 693–707.
  • 42. Meyers M.A. Dynamic Behavior of Materials [Internet]. San Diego: John Wiley&Sons; 1994.
  • 43. Szuladziński G. Formulas for Mechanical and Structural Shock and Impact. 2009.
  • 44. Hoang N.H, Hopperstad O.S, Myhr O.R, Marioara C, Langseth M. An improved nano-scale material model applied in axial-crushing analyses of square hollow section aluminium profiles. Thin-Walled Struct. 2015; 92: 93–103.
  • 45. Frodal B.H, Dæhli L.E.B, Børvik T, Hopperstad O.S. Modelling and simulation of ductile failure in textured aluminium alloys subjected to compression-tension loading. Int. J. Plast. 2019; 118: 36–69.
  • 46. Qvale K, Hopperstad O.S, Morin D, Børvik T. Micromechanics-based simulation of quasi-static and dynamic crushing of double-chamber 6000-series aluminium profiles. Int. J. Impact Eng. 2023; 180: 104636.
  • 47. Abaqus HTML Documentation.
  • 48. Qin J, Holmedal B, Hopperstad O.S. A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes. Int. J. Plast. 2018; 101: 156–169.
  • 49. Chen X, Chen H, Ma S, Chen Y, Dai J, Bréchet Y, Ji G, Zhong S, Wang H, Chen Z. Insights into flow stress and work hardening behaviors of a precipitation hardening AlMgScZr alloy: Experiments and modeling. Int. J. Plast. 2024; 172: 1–24.
  • 50. Aune S, Morin D, Langseth M, Clausen A.H. Experimental and numerical study on the tensile ductility of an aluminium alloy with heat-affected zones. Eur. J. Mech. A/Solids 2024; 105: 105239.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf5400ee-1472-446e-8ce0-3241e8547e5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.