PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis of heat flux distribution in triple-pane windows within a climatic chamber

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental study was carried out to investigate the heat flux distributionon the external surface of triple-pane windows under various conditions including: outdoor temperatures, gas filling, emissivity of the glass surfaces, and the use of electrical heating. The measurements were conducted within a controlled climatic chamber. Two window configurations were examined: one filled with air (emissivity of ε = 0.84) and the other filled with argon (emissivity of ε = 0.17). In addition, the study also assessed the impact of a local and surface electric heating on heat loss. The key contribution of this researchlies in revealing variations in the heat flux density across different parts of the external glazing of each window, specifically the lower, central, and upper regions. These findings emphasize the importance of considering the non-uniformity of thermal resistance in different areas of windows in order to accurately determine their heat transfer coefficient.
Rocznik
Strony
56--64
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Kielce University of Technology, Poland
Bibliografia
  • [1] Cuce E., Riffat S.B., A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews 2015, 41, 695-714, https://doi.org/10.1016/j.rser.2014.08.084.
  • [2] Basok B.I., Davydenko B.V., Isaev S.A., Goncharuk S.M., Kuzhel L.N., Numerical modeling of heat transfer through a triple-pane window, Journal of Engineering Physics and Thermophysics 2016, 89(5), 1277-1283, https://doi.org/10.1007/s10891-016-1492-7.
  • [3] Basok B., Davydenko B., Novikov V.G., Pavlenko A.M, Novitska M.P., Sadko K., Goncharuk S.M., Evaluation of heat transfer rates through transparent dividing structures. Energies 2022, 15, 4910, https://doi.org/10.3390/en15134910.
  • [4] Nia M.F., Nassab S.A.G., Ansari A.B., Transient numerical simulation of multiple pane windows filling with radiating gas, International Communications in Heat and Mass Transfer 2019, 108, 104291, https://doi.org/10.1016/j.icheatmasstransfer.2019.104291.
  • [5] Basok B., Davydenko B., Zhelykh V., Goncharuk S., Kuzhel L., Influence of low-emissivity coating on heat transfer through the double-glazing windows, Building physics in theory and practice (Fizyka budowli w teorii i praktyce) 2016, 8(4), 5-8.
  • [6] Arıcı M., Kan M., An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling. Renewable Energy 2015, 75, 249-256, https://doi.org/10.1016/j.renene.2014.10.004.
  • [7] Rojewska-Warchał M., The influence of glazing type, frame profiles, shape and size of the window of the final value of window thermal transmittance U. Czasopismo Techniczne, Architektura 2014, 8A(15), 199-206, https://doi.org/10.4467/2353737XCT.14.206.3294.
  • [8] Arıcı M., Karabay H., Kan M., Flow and heat transfer in double, triple and quadruple pane windows. Energy and Buildings 2015, 86, 394-402, https://doi.org/10.1016/j.enbuild.2014.10.043.
  • [9] Aguilar-Santana J.L., Velasco-Carrasco M., Riffat S., Thermal Transmittance (U-value) Evaluation of Innovative Window Technologies. Future Cities and Environment 2020, 6(1). http://doi.org/10.5334/fce.99.
  • [10] Cuce E., Accurate and reliable U-value assessment of argon-filled double glazed windows: A numerical and experimental investigation. Energy and Buildings 2018, 171, 100-106, https://doi.org/10.1016/j.enbuild.2018.04.036.
  • [11] Pavlenko A.M., Sadko K., Evaluation of Numerical Methods for Predicting the Energy Performance of Windows. Energies 2023, 16, 1425, https://doi.org/10.3390/en16031425.
  • [12] Lee R., Kang E., Lee H., Yoon J., Heat Flux and Thermal Characteristics of Electrically Heated Windows: A Case Study. Sustainability 2022, 14, 481, https://doi.org/10.3390/su14010481.
  • [13] Gloriant F., Joulin A., Tittelein P., Lassue S., Using heat flux sensors for a contribution to experimental analysis of heat transfers on a triple-glazed supply-air window. Energy 2021, 215(A), 119154, https://doi.org/10.1016/j.energy.2020.119154.
  • [14] Gori V., Marincioni V., Biddulph P., Elwell C.A., Inferring the thermal resistance and effective thermal mass distribution of a wall from in situ measurements to characterise heat transfer at both the interior and exterior surfaces. Energy and Buildings 2017, 135, 398-409, https://doi.org/10.1016/j.enbuild.2016.10.043.
  • [15] BSI. 2014. ISO 9869-1:2014 - Thermal insulation - Building elements - Insitu measurement of thermal resistance and thermal transmittance; Part 1: Heat flow meter method.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf4f77ab-a8af-463c-a722-fca6a194e0a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.