PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of RQD-number and RQD-volume multifractal modelling to delineate rock mass characterisation in Kahang Cu-Mo porphyry deposit, central Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie metod modelowania numerycznego oraz modelowania fraktalnego do analizy jakości skał w celu określenia charakterystyki górotworu w obszarze złoża Cu-Mo w Kahang, środkowy Iran
Języki publikacji
EN
Abstrakty
EN
Identification of rock mass properties in terms of Rock Quality Designation (RQD) plays a significant role in mine planning and design. This study aims to separate the rock mass characterisation based on RQD data analysed from 48 boreholes in Kahang Cu-Mo porphyry deposit situated in the central Iran utilising RQD-Volume (RQD-V) and RQD-Number (RQD-N) fractal models. The log-log plots for RQD-V and RQD-N models show four rock mass populations defined by RQD thresholds of 3.55, 25.12 and 89.12% and 10.47, 41.68 and 83.17% respectively which represent very poor, poor, good and excellent rocks based on Deere and Miller rock classification. The RQD-V and RQD-N models indicate that the excellent rocks are situated in the NW and central parts of this deposit however, the good rocks are located in the most parts of the deposit. The results of validation of the fractal models with the RQD block model show that the RQD-N fractal model of excellent rock quality is better than the RQD-V fractal model of the same rock quality. Correlation between results of the fractal and the geological models illustrates that the excellent rocks are associated with porphyric quartz diorite (PQD) units. The results reveal that there is a multifractal nature in rock characterisation with respect to RQD for the Kahang deposit. The proposed fractal model can be intended for the better understanding of the rock quality for purpose of determination of the final pit slope.
PL
Identyfikacja właściwości górotworu odgrywa zasadniczą rolę w planowaniu wydobycia i projektowaniu kopalni. Praca niniejsza ma na celu określenie charakterystyki górotworu w oparciu o dane o jakości skał zebrane na podstawie próbek uzyskanych z 48 odwiertów wykonanych w złożu porfiru Cu-Mo w Kahang, zalegającym w środkowym Iranie przy użyciu modeli fraktalnych RQD-V - Rock Quality Determination-Volume [Określenie jakości skał-objętość]) i RQD-N (Rock Quality Determination-Number [Określenie jakości skał-liczba]). Wykresy logarytmiczne wykonane dla modeli RQD-V i RQD-N wykazują istnienie czterech populacji warstw górotworu, określonych na podstawie parametrów progowych: 3.55; 25.12; 89.12% oraz 10.47; 41.68 i 83.17%, odpowiadającym kolejno stopniom jakości: bardzo słaby, słaby, dobry i bardzo dobry, zgodnie z klasyfikacją skał Deere i Millera. Wyniki uzyskane przy zastosowaniu modeli RQD-V i RQD-N wskazują, że najlepsze skały zalegają w północno- zachodniej i centralnej części złoża, z kolei dobrej jakości skały znaleźć można w obrębie całego złoża. Walidacja modeli fraktalnych w oparciu o model blokowy (RQD block model) wskazuje, że model RQD-N dla bardzo dobrej jakości skał jest skuteczniejszy niż model RQD-V dla tej samej jakości skał. Wysoki stopień korelacji pomiędzy wynikami uzyskanymi w oparciu o modele fraktalne i geologiczne pokazuje, że najwyższej jakości skały związane są z obecnością porfirowego diorytu kwarcowego. Badanie wykazuje fraktalną naturę charakterystyki jakości skał w złożu Kahang. Zaproponowany model fraktalny wykorzystać można do lepszego poznania zagadnienia jakości skał w celu obliczenia nachylenia wyrobiska.
Rocznik
Strony
1023--1035
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Camborne School of Mines, University of Exeter, Penryn, UK
autor
  • Camborne School of Mines, University of Exeter, Penryn, UK
autor
  • Camborne School of Mines, University of Exeter, Penryn, UK
autor
  • Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Camborne School of Mines, University of Exeter, Penryn, UK
  • Camborne School of Mines, University of Exeter, Penryn, UK
Bibliografia
  • Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., Asadi Haroni H., 2012. Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. Journal of Geochemical Exploration 112, 131-138.
  • Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modelling. Journal of Geochemical Exploration 108, 220-232.
  • Afzal P., Khakzad A., Moarefvand P., Rashidnejad Omran N., Esfandiari B., Fadakar Alghalandis Y., 2010. Geochemical anomaly separation by multifractal modelling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration 104, 34-46.
  • Agterberg F.P., Cheng Q., Wright D.F., 1993. Fractal modeling of mineral deposits. In: Elbrond, J., Tang, X. (Eds.), 24th APCOM symposium proceeding, Montreal, Canada, pp. 43-53.
  • Agterberg F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37, 1–8.
  • Alavi M., 1994. Tectonic of Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238.
  • Ali Kh., Cheng Q., Zhijun C., 2007. Multifractal power spectrum and singularityanalysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China. Geochemistry: Exploration, Environment, Analysis 7 (4), 293-301.
  • Bai J., Porwal A., Hart C., Ford A., Yu L., 2010. Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochernical Exploration 104, 1-11.
  • Berberian M., King G.C., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210-265.
  • Boadu F.K., Long L.T., 1994. The fractal character of fracture spacing and RQD. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31, 127-134.
  • Carranza E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11. Elsevier, Amsterdam. 351 pp.
  • Cheng Q., Agterberg F.P., Ballantyne S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51, 109-130.
  • Daneshvar Saein L., Rasa I., Rashidnejad Omran N., Moarefvand P., Afzal P., 2012. Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonlinear Processes in Geophysics 19, 431-438.
  • Dargahi S., Arvin M., Pan Y., Babaei A., 2010. Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian–Eurasian continental collision. Lithos 115, 190-204.
  • David M., 1977. Geostatistical Ore Reserve Estimation. Amsterdam: Elsevier, 283 p.
  • Davis J.C., 2002. Statistics and data analysis in Geology. John Wiley and Sons Inc., New York.638pp.
  • Deere D.U., Miller R.P., 1966. Engineering classification and index properties for intact rock. Air Force Weapons Laboratory Technical Report AFWL-TR-65-116, 277 p.
  • Deng J., Wang Q., Yang L., Wang Y., Gong Q., Liu H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105, 95-105.
  • Delavar S.T., Afzal P., Borg G., Rasa I., Lotfi M., Rashidnejad Omran N., 2012. Delineation of mineralization zones using concentration-volume fractal method in Pb–Zn Carbonate hosted deposits. Journal of Geochemical Exploration, Journal of Geochemical Exploration 118, 98-11.
  • Ehlen J., 2000. Fractal analysis of joint patterns in granite. International Journal of Rock Mechanics and Mining Sciences 37, 909-922.
  • Gałuszka A., 2007. A review of geochemical background concepts and an example using data from Poland. Environmental Geology 52 (5), 861-870.
  • Ghosh A., J.K. Daemen J., 1993. Fractal characteristics of rock discontinuities. Engineering Geology 34, 1-9.
  • Goncalves M.A., Mateus A., Oliveira V., 2001. Geochemical anomaly separation by multifractal modeling. Journal of Geochemical Exploration 72, 91-114.
  • Hamidi E., Mouza J.D., 2005. A methodology for rock mass characterisation and classification to improve blast results. International Journal of Rock Mechanics and Mining Sciences 42, 177-194.
  • Hawkes H.E., Webb J.S., 1962. Geochemistry in Mineral Exploration. Harper and Row, New York, NY.
  • Hawkes H.E., Webb J.S., 1979. Geochemistry in mineral exploration, 2ndedn. Academic Press, New York. 657pp.
  • Hitzman M.W., Oreskes N., Einaudi M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research 58, 241-287.
  • Hustrulid W., Kuchta M., 2006. Open Pit Mine Planning and Design (2th Edition). 972 p.
  • Jinga L., Hudson J.A., 2022. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences 39, 409-427.
  • Laznicka P., 2005. Giant Metallic Deposits Future Sources of Industrial Metals. Springer-Verlag. 732 pp.
  • Li C., Ma T., Shi J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration 77, 167-175.
  • Lina J.S., Kub C.Y., 2006. Two-scale modeling of jointed rock masses. International Journal of Rock Mechanics and Mining Sciences 43, 426-436.
  • Mandelbrot B.B., 1983. The Fractal Geometry of Nature. W.H. Freeman, San Francisco, CA. Updated and Augmented Edition.
  • Rafiee A., Vinches M., 2008. Application of geostatistical characteristics of rock mass fracture systems in 3D model generation. International Journal of Rock Mechanics and Mining Sciences 45, 644-652.
  • Rashidnejad Omran N., Afzal P., Harati H., Moarefvand P., Asadi Haroni H., Daneshvar Saeein L., 2011. Application of power-law frequency fractal model in etermination of vertical geochemical distribution of cu in kahang porphyry deposit, Central Iran. Journal of Mining and Metallurgy, 47 A (1), 1-8.
  • Reimann C., Filzmoser P., Garrett R.G., 2005. Background and threshold: critical comparison of methods of determination. Sci. Total Environ. 346, 1-16.
  • Sadeghi B., Moarefvand P., Afzal P., Yasrebi A.B., Daneshvar Saein L., 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, 9-19.
  • Stanley C.R., Sinclair A.J., 1989. Comparison of probability plots and gap statistics in the selection of threshold for exploration geochemistry data. Journal of Geochemical Exploration 32, 355-357.
  • Shen W., Zhao P., 2002. Theoretical study of statistical fractal model with applications to mineral resource prediction. Computers & Geosciences 28, 369-376.
  • Sim B.L., Agterberg F.P., Beaudry C., 1999. Determining the cut off between background and relative base metal contamination levels using multifractal methods. Computers and Geosciences 25, 1023-1041.
  • Tukey J.W., 1997. Exploratory Data Analysis. Addison-Wesley Publishing Company, Massachusett, Reading.
  • Turcotte D.L., 1986. A fractal approach to the relationship between ore grade and tonnage. Economic Geology 18, 1525-1532.
  • Xie H., 1993. Fractals in Rock Mechanics. Taylor & Francis, 453 p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf4cdf59-06c9-48f5-8e4c-180706803a75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.