PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

CFD modeling of droplet generation process for medical applications using the electrostatic impulse method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrostatic impulse method is an established method for producing microbeads or capsules. Such particles have found application in biomedical engineering and biotechnology. The geometric properties of the droplets – constituting precursors of microbeads and capsules – can be precisely controlled by adjusting the geometry of the nozzle system, the physical properties and the flow rate of the fluids involved, as well as the parameters of the electrostatic impulse. In this work, a method of mathematical modeling of the droplet generation process using the electrostatic impulse method in a single nozzle system is presented. The developed mathematical model is an extension of the standard Volume of Fluid (VOF) model by addition of the effect of the electric field on the fluid flow. The model was implemented into the OpenFOAM toolkit for computational fluid dynamics (CFD). The performed CFD simulation results showed good agreement with experimental data. As a result, the influence of all process parameters on the droplet generation process was studied. The most significant change in droplet generation was caused by changing the electrostatic impulse strength. The presented modeling method can be used for optimization of process design and for studying the mechanisms of droplet generation. It can be extended to describe multi nozzle systems used for one-step microcapsule production.
Rocznik
Strony
331--–355
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Ludwika Waryńskiego 1, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Ludwika Waryńskiego 1, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, Warsaw, Poland
  • Foundation of Research and Science Development, Rydygiera 8, 01-793 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Ludwika Waryńskiego 1, Warsaw, Poland
Bibliografia
  • 1. Ahn B., Lee K., Louge R., Oh W.K., 2009. Concurrent droplet charging and sorting by electrostatic actuation. Biomicrofluidics, 3, 044102. DOI: 10.1063/1.3250303.
  • 2. Allegretto G., Dobashi Y., Dixon K., Wyss J., Yao D., Madden J.D.W., 2018. Frequency domain analysis of droplet-based electrostatic transducers. Smart Mater. Struct., 27, 074007. DOI: 10.1088/1361-665X/aac134.
  • 3. Anugraha G., Madhumathi J., Prita P., Kaliraj P., 2015. Biodegradable poly-l-lactide based microparticles as controlled release delivery system for filarial vaccine candidate antigens, Eur. J. Pharmacol., 747, 174–180. DOI: 10.1016/j.ejphar.2014.12.004.
  • 4. Baskaran R., Lee C.J., Kang S.M., Oh Y., Jin S.E., Lee D.H., Yang S.G., 2018. Poly(lactic-co-glycolic acid) microspheres containing a recombinant parathyroid hormone (1-34) for sustained release in a rat model. Indian J. Pharm. Sci., 80, 837–843. DOI: 10.4172/pharmaceutical-sciences.1000429.
  • 5. Belalia F., Djelali N.E., 2014. Rheological properties of sodium alginate solutions. Revue Roumaine de Chimie, 59(2), 135–145.
  • 6. Betancor L., Luckarift H.R., 2008. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol., 26, 566–572. DOI: 10.1016/j.tibtech.2008.06.009.
  • 7. Bhatia S.R., Khattak S.F., Roberts S.C., 2005. Polyelectrolytes for cell encapsulation. Curr. Opin. Colloid Interface Sci., 10, 45–51. DOI: 10.1016/j.cocis.2005.05.004.
  • 8. Bjørklund E., 2009. The level-set method applied to droplet dynamics in the presence of an electric field. Comput. Fluids, 38, 358–369. DOI: 10.1016/j.compfluid.2008.04.008.
  • 9. Bugarski B., Li Q., Goosen M.F.A., Poncelet D., Neufeld R.J., Vunjak G., 1994. Electrostatic droplet generation: Mechanism of polymer droplet formation. AIChE J., 40, 1026–1031. DOI: 10.1002/aic.690400613.
  • 10. Cárdenas-Bailón F., Osorio-Revilla G., Gallardo-Velázquez T., 2015. Microencapsulation of insulin using a W/O/W double emulsion followed by complex coacervation to provide protection in the gastrointestinal tract. J. Microen- capsulation, 32, 308–316. DOI: 10.3109/02652048.2015.1017619.
  • 11. Castellanos A. (Ed.), 1998. Electrohydrodynamics. Springer-Verlag Wien. DOI: 10.1007/978-3-7091-2522-9.
  • 12. Chang T., 2019. ARTIFICIAL CELL evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artif. Cells Nanomed. Biotechnol., 47, 997–1013. DOI: 10.1080/21691401.2019.1577885.
  • 13. Chaves I.L., Duarte L.C., Coltro W.K.T., Santos D.A. 2020. Droplet length and generation rate investigation inside microfluidic devices by means of CFD simulations and experiments. Chem. Eng. Res. Des., 161, 260–270. DOI: 10.1016/j.cherd.2020.07.015.
  • 14. Darabi J., Rhodes C., 2006. CFD modeling of an ion-drag micropump. Sens. Actuators, A, 127, 94–103. DOI: 10.1016/j.sna.2005.10.051.
  • 15. Davidson M.R., Harvie D.J., Cooper-White J.J., 2006. Simulations of pendant drop formation of a viscoelastic liquid. Korea-Aust. Rheol. J., 18(2), 41–49.
  • 16. de Vos P., 2017. Historical perspectives and current challenges in cell microencapsulation, In: Opara E.C. (Ed.), Cell microencapsulation. Methods in Molecular Biology, vol 1479. Humana New York, NY, 3–21. DOI: 10.1007/978- 1-4939-6364-5_1.
  • 17. Diel D., Lagranha V.L., Schuh R.S., Bruxel F., Matte U., Teixeiraa H.F., 2018. Optimization of alginate micro-capsules containing cells overexpressing 𝛼-L-iduronidase using Box-Behnken design. Eur. J. Pharm. Sci., 111, 29–37. DOI: 10.1016/j.ejps.2017.09.004.
  • 18. Duan G., Haase M.F., Stebe K.J., Lee D., 2018. One-step generation of salt-responsive polyelectrolyte microcapsules via surfactant-organized nanoscale interfacial complexation in emulsions (SO NICE). Langmuir, 34, 847–853. DOI: 10.1021/acs.langmuir.7b01526
  • 19. Eberhardt A., Boˆsković D., Loebbecke S., Panić S., Winter Y., 2019. Customized design of scalable microfluidic droplet generators using step-emulsification methods. Chem. Eng. Technol., 10:2195–2201. DOI: 10.1002/ceat.201900143.
  • 20. Ferreira I.S., Bettencourt A., Betrisey B,. Gonçalves L.M.D., Trampuz A., Almeida A., 2015. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: An assessment by isothermal microcalorimetry. Int. J. Pharm., 485, 171–182. DOI: 10.1016/j.ijpharm.2015.03.016.
  • 21. Ganesh G.N.K., Chopra V., Karri V.V.S.R., Koundinya S.K., Kumar R.S., Arun R., 2018. Development and characterization of core–shell nanoparticles for anticancer therapy. Adv. Sci. Lett., 24, 5768–5777(10). DOI: 10.1166/asl. 2018.12194.
  • 22. Goosen M.F.A., Al-Ghafri A.S., El Mardi O., Al-Belushi M.I.J., Al-Hajri H.A., Mahmoud E.S.E., Consolacion E.C., 1997. Electrostatic droplet generation for encapsulation of somatic tissue: Assessment of high-voltage power supply. Biotechnol. Progr., 13, 497–502. DOI: 10.1021/bp970020d.
  • 23. He B., Yang S., Qin Z., Wen B., Zhang C., 2017. The roles of wettability and surface tension in droplet formation during inkjet printing. Sci. Rep., 7, 11841. DOI: 10.1038/s41598-017-12189-7.
  • 24. Hirt C.W., Nichols B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 201–225. DOI: 10.1016/0021-9991(81)90145-5.
  • 25. Hu S., de Vos P., 2019. Polymeric approaches to reduce tissue responses against devices applied for islet-cell encapsulation. Front. Bioeng. Biotechnol., 7, 134. DOI: 10.3389/fbioe.2019.00134.
  • 26. Hunkeler D., Rehor A., Ceausoglu I., Schuldt U., Canaple L., Bernard P., Renken A., Rindisbacher L., Angelova N., 2001. Objectively assessing bioartificial organs. Ann. N. Y. Acad. Sci., 944, 456–471. DOI: 10.1111/j.1749- 6632.2001.tb03855.x.
  • 27. Hyerim K., Chaewon B., Yun-Min K., Won-Gun K., Kangwon L., Min HP., 2019. Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res. Ther., 10, 51. DOI: 10.1186/s13287-018-1130-8.
  • 28. IUPAC, 1997. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught A.D., Wilkinson A. Blackwell Scientific Publications, Oxford. XML on-line corrected version: http://goldbook.iupac.org (2006).
  • 29. Jasak H., 2009. OpenFOAM: Open source CFD in research and industry. Int. J. Nav. Archit. Ocean Eng., 1, 89–94. DOI: 10.3744/JNAOE.2009.1.2.089.
  • 30. Kobayashi I., Vladisavljević G.T., Uemura K., Nakajima M., 2011. CFD analysis of microchannel emulsification: Droplet generation process and size effect of asymmetric straight flow-through microchannels. Chem. Eng. Sci., 66, 5556–5565. DOI: 10.1016/j.ces.2011.07.061.
  • 31. Köster S., Angilè F.E., Duan H., Agresti J.J., Wintner A., Schmitz C., Rowat A.C., Merten C.A., Pisignano D., Griffiths A.D., Weitz D.A., 2008. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip, 8, 1110–1115. DOI: 10.1039/B802941E.
  • 32. Kramek-Romanowska K., Grzeczkowicz M., Korycka P., Lewińska D., 2019. A factorial design for assessment of the effect of selected process variables on the impulse electrostatic droplet formation, In: Korbicz J., Maniewski R., Patan K., Kowal M. (Eds.), Current trends in biomedical engineering and bioimages analysis. PCBEE 2019. Advances in Intelligent Systems and Computing, 1033. Springer, Cham. DOI: 10.1007/978-3-030-29885-2_30.
  • 33. Krishnan R., Alexander M., Robles L., Foster III C.E., Lakey J.R.T., 2014. Islet and stem cell encapsulation for clinical transplantation. Review Diabetic Stud., 11, 84. DOI: 10.1900/RDS.2014.11.84.
  • 34. Lastow O., Balachandran W., 2006. Numerical simulation of electrohydrodynamic (EHD) atomization. J. Electrostat., 64, 850–859. DOI: 10.1016/j.elstat.2006.02.006.
  • 35. Lewińska D., Bukowski J., Kożuchowski M., Kinasewicz A., Weryński A., 2008. Electrostatic microencapsulation of living cells. Biocybern. Biomed. Eng., 28, 69–84. Lewińska D., Chwojnowski A., Wojciechowski C., Kupikowska-Stobba B., Grzeczkowicz M., Weryński A., 2012. Electrostatic droplet generator with 3-coaxial-nozzle head for microencapsulation of living cells in hydrogel covered by synthetic polymer membranes. Sep. Sci.Technol., 47, 463–469. DOI: 10.1080/01496395.2011.617350.
  • 36. Lewińska D., Rosiński S., Weryński A., 2004. Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads. Artif. Cells, Blood Substitues, Biotechnol., 32, 41–53. DOI: 10.1081/BIO-120028667. Li L., Zhang C., 2020. Electro-hydrodynamics of droplet generation in a co-flowing microfluidic device under electric control. Colloids Surf., A, 586, 124258. DOI: 10.1016/j.colsurfa.2019.124258.
  • 37. Lim F., Sun A.M., 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science, 210, 908–910. DOI: 10.1126/science.6776628.
  • 38. Liu H., Cui S.W., Chen M., Ii Y., Liang R., Xu F., Zhong F., 2019. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr., 59, 2863–2878. DOI: 10.1080/10408398.2017.1377684.
  • 39. López-Herrera J.M., Popinet S., Herrada M.A., 2011. A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys., 230, 1939–1955. DOI: 10.1016/j.jcp.2010. 11.042.
  • 40. Madene A., Jacquot M., Scher J., Desobry S., 2006. Flavour encapsulation and controlled release–a review. Int. J. Food Sci. Technol., 41, 1–21. DOI: 10.1111/j.1365-2621.2005.00980.x.
  • 41. Manjula K., Bhagath Y.B., 2017. New generation functional foods-a prospectus on processing technology assistance in development and production – a review. Carpathian J. Food Sci. Technol., 9(2), 64-76.
  • 42. Manojlovic V., Djonlagic J., Obradovic B., Nedovic V., Bugarski B., 2006. Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int. J. Nanomedicine, 1, 163–171. DOI:10.2147/nano.2006.1.2.163.
  • 43. Osswald C.R., Kang-Mieler J.J., 2016. Controlled and extended in vitro release of bioactive anti-vascular endothelial growth factors from a microsphere-hydrogel drug delivery system. Curr. Eye Res., 41, 1216–1222. DOI:10.3109/02713683.2015.1101140.
  • 44. Papadimitriou V.A., Kruit S.A., Segerink L.I., Eijkel J.C.T., 2020. Droplet encapsulation of electrokinetically focused analytes without loss of resolution. Lab Chip, 20, 2209–2217. DOI: 10.1039/D0LC00191K.
  • 45. Picot A., Ongmayeb G., Poncelet D., 2015. Microencapsulation as an innovative tool to enhance the functions and properties of bioactive ingredients. Agro Food Industry Hi-Tech, 26(2), 38–41.
  • 46. Pierre A.C., 2004. The sol-gel encapsulation of enzymes. Biocatal. Biotransform., 22, 145–170. DOI: 10.1080/1024 2420412331283314.
  • 47. Plog J., Jiang Y., Pan Y., Yarin A.L., 2020. Electrostatic charging and deflection of droplets for drop-on-demand 3D printing within confinements. Addit. Manuf., 36, 101400. DOI: 10.1016/j.addma.2020.101400.
  • 48. Poncelet D., Neufeld R., Bugarski B., Amsden B.G., Zhu J., Goosen M.F.A., 1994. A parallel plate electrostatic droplet generator: parameters affecting microbead size. Appl. Microbiol. Biotechnol., 42, 251–255. DOI: 10.1007/BF00902725.
  • 49. Prüsse U., Bilancetti L., Bučko M., Bugarski B., Bukowski J., Gemeiner P., Lewińska D., Manojlovic V., Massart B., Nastruzzi C., Nedovic V., Poncelet D., Siebenhaar S., Tobler L., Tosi A., Vikartovská A., Vorlop K-D., 2008. Comparison of different technologies for alginate beads production. Chem. Pap., 62, 364–374. DOI: 10.2478/s11696-008-0035-x.
  • 50. Rahman K., Ko J.B., Khan S., Kim D.S., Choi K.H., 2010. Simulation of droplet generation through electrostatic forces. J. Mech. Sci. Technol., 24, 307–310. DOI: 10.1007/s12206-009-1149-y.
  • 51. Rakoczy R., Kordas M., Markowska-Szczupak A., Konopacki M., Augustyniak A., Jabłońska J., Paszkiewicz O., Dubrowska K., Story G., Story A., Ziętarska K., Sołoducha D., Borowski T., Roszak M., Grygorcewicz B., Dołęgowska B., 2021. Studies of a mixing process induced by a rotating magnetic field with the application of magnetic particles. Chem. Process Eng., 42, 157–172. DOI: 10.24425/cpe.2021.138922.
  • 52. Rathore S., Desai P.M., Liew C.V., Chan L.W., Heng P.W.S., 2013. Microencapsulation of microbial cells. J. Food Eng., 116, 369–381. DOI: 10.1016/j.jfoodeng.2012.12.022.
  • 53. Roghair I., Musterd M., van den Ende D., Kleijn C., Kreutzer M., Mugele F., 2015. A numerical technique to simulate display pixels based on electrowetting. Microfluid. Nanofluid., 19, 465–482. DOI: 10.1007/s10404-015-1581-5
  • 54. Shahidi F., Han X.-Q., 1993. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr., 33, 501–547. DOI: 10. 1080/10408399309527645.
  • 55. Tirtaatmadja V., McKinley G.H., Cooper-White J.J., 2006. Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration. Phys. Fluids, 18, 043101. DOI: 10.1063/1.2190469.
  • 56. Tomar G., Gerlach D., Biswas G., Alleborn N., Sharma A., Durst F., Welch S.W.J., Delgado A., 2007. Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J. Comput. Phys., 227, 1267–1285. DOI:10.1016/j.jcp.2007.09.003.
  • 57. Vaithilingam V., Kollarikova G., Qi M., Lacik I., Oberholzer J., Guillemin G.J., Tuch B.E., 2011. Effect of prolonged gelling time on the intrinsic properties of barium alginate microcapsules and its biocompatibility. J. Microencapsulation, 28, 499–507. DOI: 10.3109/02652048.2011.586067.
  • 58. Vaithilingam V., Tuch B.E., 2011. Islet transplantation and encapsulation: an update on recent developments. Rev. Diabetic Stud., 8, 51–67. DOI: 10.1900/RDS.2011.8.51.
  • 59. Vakilinezhad M.A., Alipour S., Montaseri H., 2018. Fabrication and in vitro evaluation of magnetic PLGA nanoparticles as a potential Methotrexate delivery system for breast cancer. J. Drug Delivery Sci. Technol., 44, 467–474. DOI: 10.1016/j.jddst.2018.01.002.
  • 60. Vemmer M., Patel A.V., 2013. Review of encapsulation methods suitable for microbial biological control agents. Biol. Control, 67, 380–389. DOI: 10.1016/j.biocontrol.2013.09.003.
  • 61. Wei B.S., Joo S.W., 2022. The effect of surface wettability on viscoelastic droplet dynamics under electric fields. Micromachines, 13, 580. DOI: 10.3390/mi13040580.
  • 62. Wei W., Gu Z., Wang S., Zhang Y., Lei K., Kase K., 2013. Numerical simulation of the cone–jet formation and current generation in electrostatic spray—modeling as regards space charged droplet effect. J. Micromech. Microeng., 23, 015004. DOI: 10.1088/0960-1317/23/1/015004.
  • 63. Wu M., Sammons P.M., Barton K., 2017. Numerical modeling of high resolution electrohydrodynamic jet printing using OpenFOAM. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 1176–1190.
  • 64. Xia Y., Reboud J.-L., 2019. Hydrodynamic and electrostatic interactions of water droplet pairs in oil and electrocoalescence. Chem. Eng. Res. Des., 144, 472–482. DOI: 10.1016/j.cherd.2019.02.012.
  • 65. Xie Y., Bos D., de Vreede L.J., de Boer H.L., van der Meulen M.-J., Versluis M., Sprenkels A.J., van den Berg A., Eijkle J.C.T., 2014. High-efficiency ballistic electrostatic generator using microdroplets. Nat. Commun., 5, 3575. DOI: 10.1038/ncomms4575.
  • 66. Yaakov N., Mani K.A., Felfbaum R., Lahat M., Da Costa N., Belausov E., Ment D., Mechrez G., 2018. Single cell encapsulation via pickering emulsion for biopesticide applications. ACS Omega, 3, 14294–14301. DOI: 10.1021/acsomega.8b02225.
  • 67. Zhai P., Chen X.B., Schreyer D.J., 2015. PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater. Sci. Eng., C, 56, 251–259. DOI: 10.1016/j.msec.2015.06.015.
  • 68. Zhang W., He X., 2009. Encapsulation of living cells in small (100 μm) alginate microcapsules by electrostatic spraying: a parametric study. J. Biomech Eng., 131, 074515. DOI: 10.1115/1.3153326.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf4a7454-8158-448d-87fd-2da587bc6c1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.