PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of acoustic signals correlated with the fow of muons of cosmic rays, in connection with seismic activity of the north Tien Shan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work is aimed at revealing a possible connection between seismic activity and cosmic-ray muon fuxes capable of penetrating into the Earth’s crust and generating a nuclear electromagnetic cascade in a tense seismically active medium, leading to the formation of microcracks, the opening of which is accompanied by the generation of acoustic and, under certain conditions, seismic energy as predicted by Tsarev and Chechin (Atmospheric muons and high-frequency seismic noise. In: Preprint of the FIAN, vol 179, 1988). The data of the underground installation (in a well at a depth of 52 m) for monitoring geoacoustic signals correlated in time with the fow of high-energy cosmic-ray muons generated in extensive atmospheric showers implemented on the basis of the experimental complex “ATHLET” in the Tien Shan High-Altitude Scientifc Station of the Physical Institute of the Russian Academy of Sciences were used. It is found that the daily number of acoustic pulses increases signifcantly before and during appreciable regional earthquakes. The most pronounced pulsed emissions of acoustic energy, correlated in time with the fow of high-energy cosmic-ray muons generated in extensive atmospheric showers, are followed by an increasing seismic activity in the region, that support idea that penetrating into Earth’s crust the fux of cosmic-ray muons may become a “trigger” of earthquake.
Czasopismo
Rocznik
Strony
1241--1251
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Al-Farabi Kazakh National University, Almaty, Al-Farabi Av. 71, Almaty, Kazakhstan
  • Satbayev University, Institute of Physics and Technology, Ibragimovstr. 11, Almaty, Kazakhstan
autor
  • P.N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI), Leninsky Av. 53, Moscow, Russia
  • P.N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI), Leninsky Av. 53, Moscow, Russia
  • Institute of Ionosphere, NCSRT, Almaty, Kamenskoe Plato, Kazakhstan
  • Institute of Ionosphere, NCSRT, Almaty, Kamenskoe Plato, Kazakhstan
  • Al-Farabi Kazakh National University, Almaty, Al-Farabi Av. 71, Almaty, Kazakhstan
  • Satbayev University, Institute of Physics and Technology, Ibragimovstr. 11, Almaty, Kazakhstan
  • P.N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI), Leninsky Av. 53, Moscow, Russia
  • Satbayev University, Institute of Physics and Technology, Ibragimovstr. 11, Almaty, Kazakhstan
Bibliografia
  • 1. Beringer J et al (2012) Review of particle physics. Phys Rev D 86(1):010001
  • 2. Druzhin GI, Marapulets YV, Cherneva NV, Isayev NV, Solodchuk AA (2017) Acoustic and electromagnetic radiation before the earthquake in Kamchatka. Rep Acad Sci 472(5):584–589
  • 3. Groom DE, Mokhov NV, Striganov SI (2001) Muon stopping-power and range tables. Atom Data Nuclear Data Tables 78(2):78–183
  • 4. Gusev GA et al (2011) Cosmic rays as a new instrument of seismological studies. Bull Lebedev Phys Inst 38(12):374–379
  • 5. Khavroshkin OB (1999) Some problems of nonlinear seismology. Moscow: IPE RAS. 32(2):4–17
  • 6. Maksudov AU et al (2015) A setup for detecting earthquake precursors. Instrum Exp Tech 58(1):130–131
  • 7. Muminov RA et al (2009a) Developing Si(Li) nuclear radiation detectors by pulsed electric field treatment. Tech Phys Lett 35(8):768–769
  • 8. Muminov RA et al (2009b) Silicon-lithium telescopic detector in one crystal. At Energy 106(2):141–142
  • 9. Muminov RA et al (2013) Special features of formation of high-performance semiconductor detectors based on αSi-Si(Li) heterostructures. Instrum Exp Tech 56(1):32–33
  • 10. Muminov RA et al (2017) Double sided diffusion and drift of lithium ions on large volume silicon detector structure. J Semicond Technol Sci 17(5):591–596
  • 11. Rastsvetaev LM, Tveritinova TY (2016) Rotation of the Earth and planetary zones of shearing, squeezing and stretching. IPE RAS
  • 12. Rebetsky YL (2016a) Estimation of the influence of daily rotation of the earth on the stress state of the continental crust. Rep Earth Sci 469(1):743–747
  • 13. Rebetsky YL (2016b) On small tangential mass forces that may exist in the lithosphere their role in tectonics and geodynamics. Geodynam Tectonophys 7(4):691–704
  • 14. Rykunov LN, Khavroshin OB, Tsyplakov VV (2000) The effect of modulation of seismic noise of the Earth. Sci Technol Rus 1–2(38–39):11–14
  • 15. Saltykov VA, Sinitsyn VI, Chebrov VN (1997) Variations of the tidal component of high-frequency seismic noise as a result of changes in the stressed state of the medium. Seismol Volcanol 4:73–83
  • 16. Scheglov VI (1988) On the physical and mechanical properties of the source. In: Proceedings Studies on the search for precursors of earthquakes in Siberia. Novosibirsk Science. Siberian Branch, pp 21–24
  • 17. Sobolev GA (1978) Search for precursors of earthquakes. In: IPE RAS
  • 18. Sydykov A (2004) Seismic regime of the territory of Kazakhstan. In: Gylym
  • 19. Tsarev VA, Chechin VA (1988) Atmospheric muons and high-frequency seismic noise. In: Preprint of the FIAN, vol 179
  • 20. Vil’danova LI, Gusev GA, Zhukov VV et al (2013) The first results of observations of acoustic signals generated by cosmic ray muons in a seismically stressed medium. Bull Lebedev Phys Inst 49(3):74–79
  • 21. Young JB et al (1996) The Flinn-Engdahl regionalisation scheme: the 1995 revision. Phys Earth Planet Inter 96:223–297
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf45be06-70cd-4e70-bd89-1ca74d100f06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.