Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the controllability properties of the convex linear combination of fractional, linear, discrete-time systems are characterized and investigated. The notions of linear convex combination and controllability in the context of fractional-order systems are recalled. Then, the controllability property of such a linear combination of discrete-time, linear fractional systems is proven. Further, the reduction of an infinite problem of transition matrix derivation is reduced to a finite one, which greatly simplifies the numerical burden of the controllability issue. Examples of controllable and uncontrollable, single-input, linear systems are presented. The possibility of extension of the considerations to multi-input systems is shown.
Rocznik
Tom
Strony
art. no. e143102
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45D, Bialystok, Poland
autor
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, Gliwice, Poland
autor
- Warsaw University of Technology, Faculty of Electrical Engineering, ul. Koszykowa 75, Warsaw, Poland
Bibliografia
- [1] V. Jagadish, R. Srikanth, and F. Petruccione, “Convex combinations of CP-divisible Pauli channels that are not semigroups,” Phys. Lett. A, vol. 384, no. 35, p. 126907, 2020.
- [2] T. Crowder, “Linearization of quantum channels,” J. Geom. Phys., vol. 92, no. 6, pp. 157–166, 2015.
- [3] J. Klamka, Controllability of Dynamical Systems, ser. Studies in Systems, Decision and Control. Kluwer Academic Publishers. Dordrecht. The Netherlands, 1991, vol. 162.
- [4] J. Klamka, “Controllability of dynamical systems – a survey,” Arch. Control Sci., vol. 2, no. 3-4, pp. 281–307, 1993.
- [5] J. Klamka, “Controllability of dynamical systems. A survey,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 335–342, 2013.
- [6] J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 3, pp. 547–555, 2013.
- [7] J. Klamka, Controllability and Minimum Energy Control. Springer Verlag, Berlin, 2018.
- [8] A. Dzieliński and D. Sierociuk, “Reachability, controllability and observability of the fractional order discrete state-space system.” in Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR, 2007, pp. 129–134.
- [9] J. Klamka, A. Babiarz, and M. Niezabitowski, “Banach fixed-point theorem in semilinear controllability problems – a survey,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 1, pp. 21–35, 2016.
- [10] T. Kaczorek and J. Klamka, “Convex linear combination of the controllability pairs for linear systems,” Control Cybern., vol. 50, no. 1, pp. 1–11, 2021.
- [11] T. Kaczorek, Selected Problems of Fractional Systems Theory. Springer, Berlin, Heidelberg, 2011.
- [12] F. Gantmacher, The Theory of Matrices. Chelsea Publ. Comp., London, 1959.
- [13] T. Kaczorek, “Positive and stable electrical circuits with state feedbacks,” Arch. Electr. Eng., vol. 67, no. 3, pp. 563–578, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf3b55f3-8515-4681-98d2-0e2f2f0d182c