Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of a comparative study of the nitriding process of titanium alloy substrate using two lasers with different characteristics of laser beams. One of the applied lasers was a high power diode laser emitting at a dominant wavelength of 808 nm, with a rectangular laser beam spot, and multimode energy distribution across the spot. The second laser was a solid state Yb:YAG disk laser emitting at a wavelength of 1.03 μm, with a circular beam spot, characterized by near Gaussian energy distribution across the spot. In a case of both lasers single stringer beads with a similar width and at similar energy input were produced. As a result of melting of the substrate with a laser beam in a pure gaseous nitrogen atmosphere composite surface layers with in situ precipitated titanium nitrides embedded in the metallic matrix of titanium alloy were produced, in both cases. However, the surface topography and structure is different for the surface layers produce by different lasers at the same processing parameters and width of laser beams.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1777--1784
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Mechanical Enginering, Welding Department, 18 A Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
- [1] A. Lisiecki, Metals 5(1), 54 (2015), DOI:10.3390/met5010054.
- [2] A. Lisiecki, Advanced Materials Research 1036, 320 (2014).
- [3] M. Whittaker, Metals 5, 1437 (2015).
- [4] A. Kurc-Lisiecka, et al., Sol. St. Phenomena 203-204, 105 (2013).
- [5] A. Klimpel, et al., J. Mat. Proc. Tech. 164-165, 1046-1055 (2005).
- [6] M. Bonek, L.A. Dobrzański, Mat. Sci. Forum 654-656, 1848 (2010).
- [7] G. Moskal, et al., Sol. St. Phenomena 226, 121 (2015).
- [8] D. Janicki, M. Musztyfaga–Staszuk, Stroj Vestn-J Mech E 62 (6), 363-372 (2016).
- [9] A. Czuprynski, J. Gorka, M. Adamiak, Metalurgija 55(2), 173-176 (2016) (in press).
- [10] R. Burdzik, Ł. Konieczny, T. Figlus, Activities of Transport Telematics, Book Series: Communications in Computer and Information Science 395, 418-425 (2013).
- [11] R. Burdzik, J. of Vibroeng. 15(4), 2114 (2013).
- [12] R. Burdzik, Z. Stanik, J. Warczek, Arch. Metall. Mater. 57(2), 409 (2012).
- [13] R. Burdzik, Ł. Konieczny, J. of Vibroeng. 15(4), 1680 (2013).
- [14] D. Janicki, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013) 87030R DOI: 10.1117/12.2013430.
- [15] T. Węgrzyn, J. Piwnik, D. Hadryś, Arch. Metall. Mater. 58(4), 1067 (2013).
- [16] Ł. Konieczny, R. Burdzik, B. Łazarz, Journal of Vibroengineering 15(4), 2042 (2013).
- [17] T. Węgrzyn, J. Piwnik et al., Arch. Metall. Mater., 57(3), 679 (2012).
- [18] G. Golański, P. Gawień, J. Słania, Arch. Metall. Mater. 57(2), 1067 (2012).
- [19] B. Oleksiak, G. Siwiec, A. Blacha-Grzechnik, J. Wieczorek, Metalurgija 53(4), 605 (2014).
- [20] J. Bodzenta, A. Kaźmierczak, T. Kruczek, Journal de Physique IV 129, 20 (2005).
- [21] A. Lisiecki, Proceedings of SPIE, Laser Technology 2012: Application of Lasers, 8703 (2013), DOI:10.1117/12.2013431.
- [22] W. Sitek, L.A. Dobrzański, J. Mater. Process Tech. 164, 1607 (2005).
- [23] W. Sitek, Trans. Famena 34/3, 39 (2010).
- [24] L. A. Dobrzanski, et al., App. Surf. Sci. 247, 328 (2005).
- [25] A. Lisiecki, Applied Mechanics and Materials 809-810, 357 (2015).
- [26] A. Lisiecki, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013), DOI:10.1117/12.2013429.
- [27] A. Klimpel, et al., J. Mat. Proc. Tech. 170(1-3), 251 (2006).
- [28] S. Boncel, J. Górka et al., Polymer Composites 35(3), 523 (2014).
- [29] J. Górka, Indian Journal of Engineering and Materials Sciences 22, 497 (2015).
- [30] J. Jezierski, K. Janerka, Metalurgija 54(2), 365 (2015).
- [31] A. Zieliński, et al., Mater. Sci. Tech-Lond. 32(8), 780 (2016).
- [32] A. Grajcar, et al., Adv. in Mat. Sci. and Eng. 2014 (2014).
- [33] A. Grajcar, et al., Sol. St. Phenomena 203-204, 34 (2013).
- [34] A. Zieliński, et al., Arch. Civ. Mech. Eng. 4, 813 (2016),
- [35] L. A. Dobrzański, et al., Mat. Sci. Forum. 437-438, 69 (2003).
- [36] M. Bonek, et al., Adv. Mat. Res. 291-294, 1365 (2011).
- [37] S. Katayama, et al., Surface hardening of titanium by laser nitriding. In Proceedings of the ICALEO’83, Los Angeles, CA, USA, 14–17 November 1983; pp. 127–134.
- [38] K. Janerka et al., J. Mat. Proc. Tech. 214(4), 794 (2014).
- [39] L. A. Dobrzanski, W. Sitek et al., J. Mat. Proc. Tech. 157, 102 (2004).
- [40] L. A. Dobrzanski, W. Sitek, J. Mat. Proc. Tech. 90, 467 (1999).
- [41] L. A. Dobrzanski, W. Sitek et al., J. Mat. Proc. Tech. 56(1-4), 873 (1996).
- [42] S. Mridha, T.N., Baker, Mat. Sci. Eng. A199, 229 (1994).
- [43] S. Mridha, T.N. Baker, J. Mat. Proc. Tech. 77, 115 (1998).
- [44] C. Hu, T.N. Baker, Mat. Sci. Eng. A265, 268 (1999).
- [45] M. S. Selamat, T.N. Baker, L.M. Watson, J. Mat. Proc. Tech. 113, 509 (2011).
- [46] N. Ohtsu et al., Appl. Surf. Sci. 256, 4522 (2010).
- [47] E. C. Santos et al., Surf. Coat. Tech. 201, 1635 (2006).
- [48] T. M. Yue, J.K. Yu, Z. Mei, H.C. Man, Mat. Letters 52, 206 (2002).
- [49] E. Carpene, M. Shinn, P. Schaaf, Appl. Surf. Sci. 247, 307 (2005).
- [50] E. Carpene, P. Schaaf et al., Appl. Surf. Sci. 186, 195 (2002).
- [51] M. S. Trtica et al., Appl. Surf. Sci. 225, 362 (2004).
- [52] A. L. Thomann et al., Surf. Coat. Technol. 97, 448 (1997).
- [53] A. Biswas, L. Li, U.K. Chatterjee, I. Manna, J.D. Majumdar, Metall. Mater. Trans. A 40A, 3031 (2009).
- [54] M.G. Perez, Surf. Coat. Technol. 200, 5152 (2006).
Uwagi
EN
This work was partially carried out within the project POIR.01.01.01-00-0278/15-01.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf3967ff-5157-4992-a58b-d180a93ef1da