Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Leaf morphological and anatomical differences between two collection sites in central Poland were examined in tall buttercup Ranunculus acris. We hypothesized that the availability of soil moisture would affect leaf morphological and anatomical traits. The objective of this study was to examine the effect of soil moisture content on: leaf size, epidermal features and on a number of stomatal characteristics in populations of R. acris species. The plants were investigated at sites differing in soil moisture conditions (a dryer upper site and a wetter lower site). Relatively semi-dry and wet sites were identified by plant communities and soil moisture content. We found out that morphological and anatomical leaf traits of R. acris were significantly related to soil moisture content. Leaves from plants growing in the wet site were 26% smaller in size than those from the semi-dry site. The population with smaller leaf area had larger leaf perimeter and higher dissection index. The stomatal index of the leaves sampled in the semi-dry site was higher than that of the leaves sampled in the wet site. Greater leaf thickness in the semi-dry site was primarily the result of increased spongy parenchyma thickness. On the abaxial leaf surface epidermal cell density was significantly higher at the wet site implying more epidermal cells. On the adaxial leaf surface, however, epidermal cell density decreased when plants were exposed to the elevated soil moisture. The results may indicate that soil moisture content influences leaf anatomy and morphology of R. acris. Thus, all these leaf morphoanatomical traits provide a basis for R. acris to reduce water loss from leaves and to balance water use efficiency under reduced precipitation. The present study demonstrates that R. acris can maximize growth in habitats with a wide range of soil moisture availability and such information can be crucial for developing management strategies and predictive models of its spread.
Czasopismo
Rocznik
Tom
Strony
400--413
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
Bibliografia
- 1. Aasamaa K., Sõber A. 2011 — Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species — Environ. Exper. Bot. 71: 72–78.
- 2. Abrams M.D. 1990 — Adaptations and responses to drought in Quercusspecies of North America — Tree Physiol. 7: 227–238.
- 3. Black C.A. 1965 — Methods of soil analysis: Part I Physical and mineralogical properties — American Society of Agronomy Madison,Wisconsin, USA.
- 4. Baldini E., Facini O., Nerozzi F., Rossi, F., Rotondi A. 1997 — Leaf characteristics and optical properties of different woody species — Trees, 12: 73–81.
- 5. Bañon S., Fernandez J.A. Franco J.A., Torrecillas A., Sánchez-Blanco M.J. 2004 — Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants — Sci. Hort. 101: 333– 342.
- 6. Ceulemans R., Van Praet L., Jiang X.N. 1995 — Effects of CO2enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus) — New Phytol. 131: 99–107.
- 7. Coles S.M. 1971 — The Ranunculus acris L. complex in Europe —Watsonia, 8: 237–261.
- 8. Cowart N.M., Graham J.H. 1999 — Within-and among-individual variation in fluctuating asymmetry of leaves in the fig (Ficus carica L.) — Int. J. Plant Sci. 160: 116–121.
- 9. Cunningham S.A., Summerhayes B., Westoby M. 1999 — Evolutionary divergences in leaf structure and chemistry comparing rainfall and soil nutrient gradients — Ecol. Monogr. 69: 569–588.
- 10. Dickinson T.A., Parker W.H., Strauss R.E. 1987 — Another approach to leaf shape comparisons — Taxon, 36: 1–20.
- 11. Dunlap J.M., Stettler R.F. 2001 — Variation in leaf epidermal and stomatal traits of Populus trichocarpa from two transects across the Washington Cascades — Can. J. Bot. 79: 528–536.
- 12. Ehleringer, J., Björkman, O. 1978 — Pubescence and leaf spectral characteristics in a desert shrub, Encolia farinose — Oecologia, 36:151–162.
- 13. Ehleringer, J., Mooney, H.A., 1978 — Leaf hairs: effects on physiological activity and adaptive value to a desert shrub — Oecologia, 37: 183–200.
- 14. Ehleringer J., Mooney H.A., Gulmon S.L., Rundel P.W. 1981 — Parallel evolution of leaf pubescence in Encelia in coastal deserts of North and South America — Oecologia, 49: 38–41.
- 15. Ennajeh M., Vadel A.M., Cochard H., Khemira H. 2010 — Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar — J. Hortic. Sci. Biot. 85: 289–294.
- 16. Fahn A. 1986 — Structural and functional properties of trichomes of xeromorphic leaves — Ann Bot. (Lond) 57: 631–637.
- 17. Farley R.A., Mcneilly T. 2000 — Diversity and divergence in Cistus salvifolius (L.) populations from contrasting habitats — Hereditas, 132:183–192.
- 18. Fonseca C.R., Overton J.M., Collins B., Westoby M. 2000 — Shifts in trait- combinations along rainfall and phosphorus gradients — J. Ecol. 88:964–977.
- 19. Forysiak J., Michalska-Hejduk D. 2004 — Changes of the Wilczków peat-bog under long- term anthropopressure (In: The Future of Polish Mires, Eds: L. Wołejko, L. Jasnowska) — Soc. Scient. Stetinensis, Agricult. Univ.Szczecin, pp. 213–218.
- 20. Garnier E., Shipley B., Roumet C., Laurent G. 2001 — A standardized protocol for the determination of specific leaf area and leaf dry matter content — Funct. Ecol. 15: 688– 695.
- 21. Gindel I. 1969 — Stomata constellation in the leaves of cotton, maize and wheat plants as a function of soil moisture and environment — Physiol. Plant. 22: 1143–1151.
- 22. Gonzáles-Rodriguez A., Oyama K. 2005 — Leaf morphometric variation inQuercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks — Bot. J. Linn. Soc. 147: 427–435.
- 23. Gurevitch J., Schuepp P.H. 1990 — Boundary layer properties of highly dissected leaves: an investigation using an electrochemical fluid tunne —Plant, Cell Environ. 13: 783–792.
- 24. Harper J.L. 1957 — Biological flora of the British Isles — Ranunculus acrisL. (R. acer auct. plur) — J. Ecol. 45: 289–342.
- 25. Hetherington A.M., Woodward I. 2003 — The role of stomata in sensing and driving environmental change — Nature, 424: 901–908.
- 26. Jack S.B., Long J.N. 1991 — Response of leaf area index to density for two contrasting tree species — Can. J. For. Res. 21: 1760–1764.
- 27. Kincaid D.T., Schneider R.B. 1983 — Quantification of leaf shape with a microcomputer and Fourier transform — Can. J. Bot. 61: 2333–2342.
- 28. Klich M.G. 2000 — Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity — Environ. Exper. Bot. 44: 171–183.
- 29. Kozlowski T.T. 1976 — Water relations and tree improvement (In: Tree physiology and yield improvement, Eds: M.G.R Cannell, F.T. Last) —Academic Press, London, pp. 307–327.
- 30. Kundu S.K., Tigerstedt P.M.A. 1997 — Geographical variation in seed and seedling traits of Neem (Azadirachta indica A. JUSS.) among ten populations studied in growth chamber — Silvae Genet. 46: 2–3.
- 31. Lewis M.C. 1972 — The physiological significance of variation in leaf structure — Sci. Prog. 60: 25–51.
- 32. Li Z., Yu D. 2009 — Factors effecting leaf morphology a case study ofRanunculus natans C & Mey. (Ranunculaceae) in the arid zone of northwest China — Ecol Res. 24: 1323–1333.
- 33. Lynn D.E., Waldren S. 2001 — Morphological variation in populations ofRanunculus repens from the temporary limestone lakes (turloughs) in the west of Ireland — Ann. Bot. 87: 9–17.
- 34. Maherali H., Reid C.D., Policy H.W., Johnson H.B., Jachson R.B. 2002 —Stomatal acclimation over a sub ambient to elevated CO2 gradient in a C3/C4 grassland — Plant Cell Environ. 25: 557–566.
- 35. Malone S.R., Mayeux H.S., Johnson H.B., Policy H.W. 1993 — Stomatal density and aperture length in four plant species grown across a sub ambient CO2 gradient — Am. J. Bot. 80: 1413–1418.
- 36. Mclellan T. 1993 — The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei (Begoniaceae) — Am. J. Bot. 80: 796–804.
- 37. Mclellan T. 2000 — Geographic variationand plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae) — Bot. J. Linn. Soc. 132: 79–95.
- 38. Meidner H., Mamsfield T.A. 1968 — Physiology of stomata. McGraw-Hill,UK. 179 pp.
- 39. Mitton J.B., Grant M.C., Yoshino A.M. 1998 — Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture — Am. J. Bot. 85: 1262–1265.
- 40. Mott K.A., Michaelson O. 1991 — Amphistomy as an adaptation to high light intensity in Ambrosia cordifolia (Compositae) — Am. J. Bot. 78:76–79.
- 41. Picotte J.J., Rosenthal D.M., Rhode J.M., Cruzan M.B. 2007 — Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance — Oecologia, 153: 821–832.
- 42. Pyakurel A., Wang J.R. 2014 — Leaf Morphological and stomatal variations in paper birch populations along environmental gradients in Canada — Am. J. Plant Sci. 5: 1508–1520.
- 43. Quarrie S.A., Jones H. 1977 — Effects of abscistic acid and water stress on development and morphology of wheat — J. Exp. Bot. 28: 192–203.
- 44. Radoglou K.M., Jarvis P.G. 1990 — Effects of CO2 enrichment on four poplar clones. II. Leaf surface properties — Ann. Bot. 65: 627–632.
- 45. Raschke K. 1960 — Heat transfer between the plant and the environment— Annu. Rev. Plant Physiol. 11: 11–126.
- 46. Rossatto D.R., Kolb R.M. 2010 — Gochnatia polymorpha (Less.) Cabrera (Asteraceae) changes in leaf structure due to differences in light and edaphic conditions. Acta Bot. Bras. 24: 605–612.
- 47. Rotondi A., Rossi F., Asunis C., Cesaraccio C. 2003 — Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem — J. Mediterr. Ecol. 4: 25–35.
- 48. Roy B.A., Stanton M.L., Eppley S.M. 1999 — Effects of environmental stress on leaf hair density and consequences for selection — J. Evol. Biol.12: 1089–1103.
- 49. Royer F., Dickinson R. 1999 — Weeds of the Northern U.S. and Canada —The University of Alberta press. 434 pp.
- 50. Sachs T., Novopiansky N., Kagan M.L. 1993 — Variable development and cellular patterning in the epidermis of Ruscus bypogiossum — Ann. Bot.71: 237–243.
- 51. Salisbury E.J. 1927 — On the causes and ecological significance of stomatal frequency, with special reference to woodland flora — Phil. Trans. R. Soc. B 431: 1–65.
- 52. Sharpe P.J.H. 1973 — Adaxial and ab axial stomatal resistance of cotton in the field — Agron. J. 65: 570–574.
- 53. Shields L.M. 1950 — Leaf xeromorphy as related to physiological and structural influences — Bot. Rev. 16: 399–447.
- 54. Stat-Soft Inc. 2011 — Statistica for Windows — Tulsa: Stat-soft, Inc.
- 55. Stocker O. 1960 — Physiological and morphological changes in plants due to water deficiency. Plant water relationships in arid and semiarid conditions — Rev. Res. UNESCO (Paris) 15: 63–104.
- 56. Tsukaya H. 2005 — Leaf shape: genetic controls and environmental factors — Int. J. Dev. Biol. 49: 547–555.
- 57. Zhang Y.P., Wang Z.M., Wu Y.C., Zhang X. 2006 — Stomatal charactewristics of different green organs in wheat under different irrigation regimes — Acta Agron. Sin. 32: 70–75.
- 58. Xu Z., Zhou G. 2008 — Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass — J. Exp. Bot.59: 3317–3325.
- 59. Yang H.M., Wang G.X. 2001 — Leaf stomatal densities and distribution inTriticum aestivum under drought and CO2 enrichment — Acta Phyt. Sinica, 25: 312–316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf38d2c2-6d0b-49f9-9722-8e239f201b1e