PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method to use MODIS water vapor products for correction of atmospheric-induced phase in interferogram

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
DInSAR is a major space-geodetic technique widely used in the study of earth surface deformation. A major source of phase errors in DInSAR technique is heterogeneous phase delay caused mainly by variation of water vapors in troposphere, which is a factor limiting applications of DInSAR mainly to arid areas. This paper presents study results of three methods to correct atmospheric phase errors in DInSAR interferograms formed by TerraSAR-X images. The first method is the use of wet delay derived directly from MODIS precipitable water vapor product. The second method employs ground-based meteorological data to calibrate MODIS PWV before computing phase delays. The third method improves the second method by estimating the expected MODIS PWV value at the time of the TerraSAR-X image acquisitions which over the Bangkok test area is 5 hour earlier than that of MODIS. The time-shifted linear fit model along with the IDW interpolation is used to estimate more realistic phase delays over entire imaging area. From the study of this tropical test area, this time-corrected method provides best results while the second method also achieves a significantly better result than those obtained from direct use of MODIS PWV data.
Słowa kluczowe
Rocznik
Strony
47--62
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Department of Survey Engineering Chulalongkorn University Bangkok, Thailand Tel. 66-2-2186662 Fax. 66-2-2186653
  • Department of Survey Engineering Chulalongkorn University Bangkok, Thailand Tel. 66-2-2186662 Fax. 66-2-2186653
Bibliografia
  • Aobpaet, A., Cuenca, M., Hooper, A., Trisirisatayawong, I. (2010). Land subsidence evaluation using InSAR time series analysis in Bangkok metropolitan area. Fringe 2009 Workshop. Frascati, Italy.
  • Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., & Ware, R. H. (1992). GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research, 97(D14), 15, 787-715, 801.
  • Cutberto, U. P., & Wilver, E. S. (2010). An accuracy assessment of spaceborne x-band (TerraSAR-X) spotlight mode InSAR DEMs. Accuracy 2010 Symposium. Leicester, UK.
  • Emardson, T., Simons, M., & Webb, F. (2003). Neutral atmospheric delay in interferometric sysnthetic aperture radar applications: Statistical description and mitigation. Journal of Geophysical Research , 108, 2231.
  • Galloway, D., & Hoffman, J. (2007). The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal , 15 (1), 133-154.
  • Gao, B. C., & Kaufman, Y. (2003). Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical Research , 108 (D13, 4389).
  • Hanssen, R. F., Weckwerth, T. M., Zebker, H. A., & Klees, R. (1999). High-resolution water vapor mapping from interferometric radar measurements. Science , 283 (5406), 1297-1299.
  • Hanssen, R. (2001). Radar Interferometry: Data interpretation and Error Analysis. Kluwer Academic Publishers: Dordrecht.
  • Katsougiannopoulos, S., Pikridas, C., Rossikopoulos, D., Ifadis, I. M., & Fotiou, a. A. (2006). Tropospheric Refraction Estimation Using Various Models, Radiosonde Measurements and Permanent GPS data. XXIII FIG Congress. Munich, Germany.
  • Kos, T., Botincan, M., & Markezic, I. (2008). Estimation of Tropospheric Delay Models compliance. 50th International Symposium ELMAR-2008. Zadar, Croatia.
  • Li, Z., Muller, J., Cross, P. (2003). Tropospheric correction techniques in repeat-pass SAR interferometry. Proceedings of the Fringe 2003 workshop, ESA ESRIN. Frascati, Italy.
  • Li, Z. (2004). Production of regional 1 km x 1 km water vapor fields through the integration of GPS and MODIS data. Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation. Long Beach, California, USA.
  • Li, Z., Muller, J., Cross, P., & Fielding, E. J. (2005). Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research , 110.
  • Li, Z., Fielding, E.J., Cross, P., & Preusker, R. (2009). Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. International Journal of Remote Sensing , 30(13), 3343-3363.
  • Mendes, V. (1999). Modeling the neutral-atmosphere propagation delay in radiometric space techniques. PhD thesis. New Brunswick, Canada: University of New Brunswick.
  • Phienwej, N. G. (2006). Bangkok Land Subsidence. Engineering Geology , 82 (4), 187-201.
  • Poncos, V., & Dana, I. (2008). Interferometric Generation of Digital Elevation Models for Urban Areas Using TerraSAR-X.
  • Qu, W. J., Zhu, W.-Y., Song, S. L., & Ping, J. S. (2008). Evaluation of the Precision of Three Tropospheric Delay Correction Models. Chinese Astronomy and Astrophysics , 32 (4), 429-438.
  • Rabus, B. E. (2003). The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. Journal of Photogrammetry and Remote Sensing , 241-262.
  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophysics monograph 15, 3rd Int. Symp. Use of Artificial Satellites for Geodesy, AGU, (pp. 247-251).
  • Webley, P. B. (2002). Atmospheric water vapour correction to InSAR surface motion measurements on mountains: results from a dense GPS network on Mount Etna. Phys. Chem. Earth , 363-370.
  • Zebker, H. A., Rosen, P. A., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research , 102, 7547-7563.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf3671d7-04d4-4d4d-aa28-bdd8599b6954
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.