Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present paper, provides a study of conducting experimental investigations (based on the ISO standards), in the context of determining material properties (mechanical and strength parame-ters) in the case of thin-walled composite structures - made of carbon-epoxy composite. Tests were carried out on 5 different types of test specimens (in accordance with the standards), with a minimum of 9 specimens per each type of test. The tests provided high repeatability of results, and the large number of test specimens per each test made it possible to precisely average the test results in terms of determining the necessary material properties. The tests were carried out using a Zwick Z100 universal testing machine (UTM), under room temperature conditions, using two types of test heads that allow static experimental tests. The results presented in this paper con-stitute a prelude to research within the framework of the project from the National Science Centre (Poland) with the number 2021/41/B/ST8/00148. The paper presents the initial stage of the im-plementation of the aforementioned project - which was the determination of material parameters of the composite material from which the target thin-walled composite structures with closed sections were made.
Wydawca
Rocznik
Tom
Strony
232--246
Opis fizyczny
Bibliogr. 48 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Berardi, V.P.; Perrella, M.; Feo, L.; Cricrì, G. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling. Compos. Part B Eng. 2017; 122: 136–144. https://doi.org/10.1016/j.compositesb.2017.04.015.
- 2. Fascetti, A.; Feo, L.; Nistic, N.; Penna, R. Web-flange behavior of pultruded GFRP I beams: A lattice model for the interpretation of experimental results. Compos. B Eng. 2016; 100: 257–269.
- 3. Falkowicz, K.; Debski, H. Stability analysis of thin-walled composite plate in unsymmetrical configuration subjected to axial load. Thin-Walled Structures, 2021, 158, 107203.
- 4. Rozylo, P.; Wysmulski, P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Compos. Struct. 2021; 262: 113597. https://doi.org/10.1016/j.compstruct.2021.113597.
- 5. Rozylo, P.; Debski. H. Effect of eccentric loading on the stability and load-carrying capacity of thin walled composite profiles with top-hat section. Compos. Struct. 2020; 245: 112388.
- 6. Banat, D.; Mania, R. Failure assessment of thin-walled FML profiles during buckling and post-buckling response. Compos. Part B: Eng. 2017; 112: 278–289. https://doi.org/10.1016/j.compositesb.2017.01.001.
- 7. Madukauwa-David, I.D.; Drissi-Habti, M. Numerical simulation of the mechanical behavior of a large smart composite platform under static loads. Compos. Part B Eng. 2016; 88: 19–25. https://doi.org/10.1016/j.compositesb.2015.10.041.
- 8. Feo, L.; Latour, M.; Penna, R.; Rizzano, G. Pilot study on the experimental behavior of GFRP-steel slip-critical connections. Compos. Part B Eng. 2017; 115: 209–222. https://doi.org/10.1016/j.compositesb.2016.10.007.
- 9. Debski, H.; Rozylo, P.; Wysmulski, P.; Falkowicz, K.; Ferdynus, M. Experimental study on the effectof eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Compos. B Eng 2021; 226: 109346.
- 10. Rozylo, P. Failure analysis of thin-walled composite structures using independent advanced damage models. Compos. Struct. 2021; 262: 113598. https://doi.org/10.1016/j.compstruct.2021.113598.
- 11. Czechowski, L.; Kolakowski, Z. The study of buckling and post-buckling of a step-variable FGM box. Materials 2019; 12(6): 918.
- 12. Teter A. and Kolakowski Z.: Interactive buckling of wide plates made of Functionally Graded Materials with rectangular stiffeners. Thin-Walled Struct. 2022; 171: 108750.
- 13. Liu, J.; He, B.; Ye, W.; Yang, F. High performance model for buckling of functionally graded sandwich beams using a new semi-analytical method. Compos. Struct. 2021; 262: 113614.
- 14. Rozylo, P.; Lukasik, D. Numerical analysis of the critical state of thin-walled structure with z-profile cross section. Adv. Sci. Technol. Res. J. 2017; 11(1): 194–200.
- 15. Rozylo, P.; Falkowicz, K.; Wysmulski, P.; Debski, H.; Pasnik, J.; Kral, J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials 2021; 14: 1506. https://doi.org/10.3390/ma14061506.
- 16. Aveiga, D.; Ribeiro, M.L. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Math. Probl. Eng. 2018; 2018: 1–9. https://doi.org/10.1155/2018/1861268.
- 17. Gliszczynski, A.; Kubiak, T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Compos. Struct. 2017; 169: 52–61.
- 18. Wysmulski, P.; Debski, H. Post-Buckling and Limit States of Composite Channel-Section Profiles under Eccentric Compression. Compos. Struct. 2020; 245: 112356. https://doi.org/10.1016/j.compstruct.2020.112356.
- 19. Rozylo, P. Experimental-numerical test of open section composite columns stability subjected to axial compression. Arch. Mater. Sci. Eng. 2017; 84(2): 58–64.
- 20. Rozylo, P.; Wrzesinska, K. Numerical analysis of the behavior of compressed thin-walled elements with holes. Adv. Sci. Technol. Res. J. 2016; 10(31): 199–206.
- 21. Falkowicz, K.; Debski, H. The work of a compressed, composite plate in asymmetrical arrangement of layers. AIP Conf. Proc 2019, 2078, 020005.
- 22. Falkowicz, K.; Debski, H.; Teter, A. Design solutions for improving the lowest buckling loads of a thin laminate plate with notch. AIP Conf. Proc 2018; 1922: 080004.
- 23. Wysmulski, P.; Debski, H.; Falkowicz, K.; Rozylo, P. The influence of load eccentricity on the behavior of thin-walled compressed composite structures. Compos. Struct. 2019; 213: 98–107.
- 24. Falkowicz, K.; Debski, H. Stability analysis of thin-walled composite plate in unsymmetrical configuration subjected to axial load. Thin-Walled Struct. 2021; 158: 107203.
- 25. Rozylo, P. Stability and failure of compressed thin-walled composite columns using experimental tests and advanced numerical damage models. Int J Numer Methods Eng. 2021; 122: 5076–5099.
- 26. Kolanu, N.R.; Raju, G.; Ramji, M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Compos. Part B Eng. 2020; 190: 107931. https://doi.org/10.1016/j.compositesb.2020.107931.
- 27. Li, W.; Cai, H.; Li, C.; Wang, K.; Fang, L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics. Adv. Compos. Mater. 2014; 23: 477–490. https://doi.org/10.1080/09243046.2014.915105.
- 28. Rozylo, P. Comparison of Failure for Thin-Walled Composite Columns. Materials 2022, 15, 167.
- 29. Rozylo, P.; Wysmulski, P.; Falkowicz, K. Fem and experimental analysis of thin-walled composite elements under compression. Int. J. Appl. Mech. Eng. 2017; 22(2): 393–402.
- 30. Duarte, A.P.C.; Díaz Sáez, A.; Silvestre, N. Comparative study between XFEM and Hashin damage criterion applied to failure of composites. Thin Walled Struct. 2017; 115: 277–288.
- 31. Rozylo, P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Compos. Struct. 2020; 257: 113303. https://doi.org/10.1016/j.compstruct.2020.113303.
- 32. Rozylo, P.; Falkowicz, K. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Compos. Struct. 2021; 273: 114298. https://doi.org/10.1016/j.compstruct.2021.114298.
- 33. Ribeiro, M.L.; Vandepitte, D.; Tita, V. Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates. Appl. Compos. Mater. 2013; 20: 975–992. https://doi.org/10.1007/s10443–013–9315-x.
- 34. Sohn, M.S.; Hu, X.Z.; Kim, J.K.; Walker, L. Impact damage characterisation of carbon fibre/epoxy composites with multilayer reinforcement. Compos. B. Eng. 2000; 31: 681–691.
- 35. Zhao, L.; Gong, Y.; Zhang, J.; Chen, Y.; Fei, B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 2014; 116: 509–522. https://doi.org/10.1016/j.compstruct.2014.05.042.
- 36. Rzeczkowski, J.; Pasnik, J.; Samborski, S. Mode III numerical analysis of composite laminates with elastic couplings in split cantilever beam configuration. Compos. Struct. 2021; 265: 113751.
- 37. Tan, W.; Falzon, B.G.; Chiu, L.N.; Price, M. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Compos. Part A: Appl. Sci. Manuf. 2015; 71: 212–226. https://doi.org/10.1016/j.compositesa.2015.01.025.
- 38. Xian G., Guo R., Li C., Wang Y. Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022; 293: 115719.
- 39. Subramanian N., Solaiyan E., Sendrayaperumal A., Lakshmaiya N. Flexural behaviour of geopolymer concrete beams reinforced with BFRP and GFRP polymer composites. Advances in Structural Engineering 2022; 25(5): 954–965.
- 40. Li C., Guo R., Xian G., Li H. Effects of elevated temperature, hydraulic pressure and fatigue loading on the property evolution of a carbon/glass fiber hybrid rod. Polymer Testing 2020; 90: 106761.
- 41. Ramkumar, R.; Rajaram, K.; Saravanan, P.; Venkatesh, R.; Saranya, K.; Jenaris, D.S. Determination of mechanical properties of CFRP composite reinforced with Abaca and Kenaf fibres. Mater. Today: Proc. 2022; 62: 5311–5316.
- 42. PN-EN ISO 527–5:2010.
- 43. PN-EN ISO 14129:2000.
- 44. PN-EN ISO 14126:2002.
- 45. Jonak, J.; Karpinski, R.; Wojcik, A.; Siegmund, M. The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials 2021; 14: 1841.
- 46. Jonak, J.; Siegmund, M.; Karpinski, R.; Wojcik, A. Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials 2020; 13(6): 1332.
- 47. Jonak, J.; Karpinski, R.; Wojcik, A. Numerical Analysis of Undercut Anchor Effect on Rock. J. Phys.: Conf. Ser. 2021; 2130: 012011. https://doi.org/10.1088/1742–6596/2130/1/012011.
- 48. Jonak, J.; Karpinski, R.; Wojcik, A. Numerical Analysis of the Effect of Embedment Depth on the Geometry of the Cone Failure. J. Phys. Conf. Ser. 2021; 2130: 012012. https://doi.org/10.1088/1742–6596/2130/1/012012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf358c88-d7ce-462c-8488-2d65be0b2ff6