PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hot isostatic pressing influence on the mechanical properties of selectively laser-melted 316L steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industries that rely on additive manufacturing of metallic parts, especially biomedical companies, require material science-based knowledge of how process parameters and methods affect the properties of manufactured elements, but such phenomena are incompletely understood. In this study, we investigated the influence of selective laser melting (SLM) process parameters and additional heat treatment on mechanical properties. The research included structural analysis of residual stress, microstructure, and scleronomic hardness in low-depth measurements. Tensile tests with specimen deformation analysis using digital image correlation (DIC) were performed as well. Experiment results showed it was possible to observe the porosity growth mechanism and its influence on the material strength. Specimens manufactured with 20% lower energy density had almost half the elongation, which was directly connected with the porosity growth during energy density reduction. Hot isostatic pressing (HIP) treatment allowed for a significant reduction of porosity and helped achieve properties similar to specimens manufactured using different levels of energy density.
Rocznik
Strony
1413--1424
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Robots & Machine Design, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Robots & Machine Design, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Robots & Machine Design, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
autor
  • Institute of Ceramics and Building Materials, Department of Ceramics and Composites, ul. Postepu 9, 02-676 Warsaw, Poland
autor
  • Institute of Ceramics and Building Materials, Department of Ceramics and Composites, ul. Postepu 9, 02-676 Warsaw, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Robots & Machine Design, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Robots & Machine Design, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Vehicles & Transportation, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Institute of Robots & Machine Design, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw 49, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
Bibliografia
  • [1] A. du Plessis et al., “Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing”, Addit. Manuf. 27, 408–427 (2019).
  • [2] L.E. Murr, “Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication”, J. Mater. Sci. Technol. 32(10), 987–995 (2016).
  • [3] P. Rokicki et al., “Manufacturing of aircraft engine transmission gear with SLS (DMLS) method”, Aircr. Eng. Aerosp. Technol. 88(3), 397–403 (2016).
  • [4] K.S. Prakash, T. Nancharaih, and V.V.S. Rao, “Additive Manufacturing Techniques in Manufacturing -An Overview”, Mater. Today Proc. 5(2), 3873–3882 (2018).
  • [5] J. Robl, J. Sedlák, Z. Pokorný, P. Ňuksa, I. Barényi, and J. Majerík, “Analysis of advanced additive technology in direct metal laser sintering and precision casting method”, Bull. Pol. Ac.: Tech. 68(1), 109–118 (2020).
  • [6] J. Kluczyński et al., “The Examination of Restrained Joints Created in the Process of Multi-Material FFF Additive Manufacturing Technology”, Materials (Basel). 13(4), 903 (2020).
  • [7] J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, and B. Van Hooreweder, “On the influence of laser defocusing in Selective Laser Melting of 316L”, Addit. Manuf. 23, 161–169 (2018).
  • [8] J. Kluczyński et al., “Comparison of different heat treatment processes of selective laser melted 316L steel based on analysis of mechanical properties”, Materials (Basel). 13(17), 3805 (2020).
  • [9] J. Kluczyński et al., “Crack growth behavior of additively manufactured 316L steel-influence of build orientation and heat treatment”, Materials (Basel). 13(15), 3259 (2020).
  • [10] A. Antolak-Dudka et al., “Static and dynamic loading behavior of Ti6Al4V honeycomb structures manufactured by Laser Engineered Net Shaping (LENSTM) technology”, Materials (Basel). 12(80), 1225 (2019).
  • [11] M. Kucewicz, P. Baranowski, J. Małachowski, A. Popławski, and P. Płatek, “Modelling, and characterization of 3D printed cellular structures”, Mater. Des. 142, 177–189 (2018.
  • [12] J. Maszybrocka, A. Stwora, B. Gapiński, G. Skrabalak, and M. Karolus, “Morphology and surface topography of Ti6Al4V lattice structure fabricated by selective laser sintering”, Bull. Pol. Ac.: Tech. 65(1), 85–92 (2017).
  • [13] M. Kucewicz, P. Baranowski, M. Stankiewicz, M. Konarzewski, P. Płatek, and J. Małachowski, “Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions”, Thin-Walled Struct. 145, 106385 (2019).
  • [14] N. Kalentics, E. Boillat, P. Peyre, S. Ćirić-Kostić, N. Bogojević, and R. E. Logé, “Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening”, Addit. Manuf. 16, 90–97 (2017).
  • [15] W. Macek, D. Rozumek, and G.M. Królczyk, “Surface topography analysis based on fatigue fractures obtained with bending of the 2017A-T4 alloy”, Meas. J. Int. Meas. Confed. 152, 107347 (2020).
  • [16] W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, and V. Hansen, “Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L”, J. Alloys Compd. 740, 910–925 (2018).
  • [17] D. Leordean, C. Dudescu, T. Marcu, P. Berce, and N. Balc, “Customized implants with specific properties, made by selective laser melting”, Rapid Prototyp. J. 21(1), 98–104 (2015).
  • [18] A. Röttger, K. Geenen, M. Windmann, F. Binner, and W. Theisen, “Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material”, Mater. Sci. Eng. A 678, 365–376 (2016).
  • [19] A. Riemer, H.A. Richard, J. P. Brüggemann, and J.N. Wesendahl, “Fatigue crack growth in additive manufactured products”, Frat. ed Integrita Strutt. 9(34), 437–446 (2015).
  • [20] J. Kunz, A. Kaletsch, and C. Broeckmann, “Influence of HIP post-treatment on the fatigue strength of 316l-steel produced by selective laser melting (SLM)”, World PM 2016 Congr. Exhib., 2016.
  • [21] B. AlMangour, D. Grzesiak, and J.M. Yang, “Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites”, J. Alloys Compd. 728, 424‒435 (2017).
  • [22] K. Ścigała, R. Bedziński, J. Filipiak, E. Chlebus, and B. Dybała, “Application of generative technologies in the design of reduced stiffness stems of hip joint endoprosthesis”, Arch. Civ. Mech. Eng. 11(3), 753–767 (2011).
  • [23] J.J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties”, Annu. Rev. Mater. Res. 46(1), 151‒186 (2016).
  • [24] K. Geenen, A. Röttger, and W. Theisen, “Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting”, Mater. Corros. 68(7), 764–775 (2017).
  • [25] L. Śniezek, K. Grzelak, J. Torzewski, and J. Kluczyński, “Study of the mechanical properties components made by SLM additive technology”, in 11th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems, ITELMS 2016, 2016, pp. 145–153.
  • [26] J. Kluczyński, L. Śniezek, K. Grzelak, and J. Mierzyński, “The influence of exposure energy density on porosity and microhardness of the SLM additive manufactured elements”, Materials (Basel). 11(11), 2304 (2018).
  • [27] J. Kluczyński, L. Sniezek, K. Grzelak, and J. Torzewski, “The influence of layer re-melting on tensile and fatigue strength of selective laser melted 316L steel”, in 12th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems, ITELMS 2018, 2018, pp. 115–123.
  • [28] J. Kluczyński et al., “Influence of Selective Laser Melting Technological Parameters on the Mechanical Properties of Additively Manufactured Elements Using 316L Austenitic Steel”, Materials (Basel). 13(6), 1449 (2020).
  • [29] D. Wang, Y. Liu, Y. Yang, and D. Xiao, “Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting”, Rapid Prototyp. J. 22(4), 706–716 (2016).
  • [30] P. Mercelis and J. P. Kruth, “Residual stresses in selective laser sintering and selective laser melting”, Rapid Prototyp. J. 12(5), 254–265 (2006).
  • [31] B. Kania, P. Indyka, L. Tarkowski, and E. Beltowska-Lehman, “X-ray diffraction grazing-incidence methods applied for gradient-free residual stress profile measurements in electrodeposited Ni coatings”, J. Appl. Crystallogr. 48(1), 71–78 (2015).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf335324-221a-4f41-93cd-5834707a8f40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.