PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An integrated electromechanical model for the cochlear microphonic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cochlear microphonic (CM) is an electrical signal generated inside the cochlea in response to sound. This electrical signal reflects mechanical activity in the cochlea and the excitation processes involved in its generation. However, the difficulty of obtaining this signal and the simplicity of obtaining other signals such as otoacoustic emissions have discouraged the use of the cochlear microphonic as a tool for studying cochlear functions. In this article, a model of the cochlea is presented which integrates both mechanical and electrical aspects, enabling the interaction between them to be investigated. The resulting model is then used to observe the effect of the cochlear amplifier on the CM. The results indicate that while the cochlear amplifier significantly amplifies the basilar membrane displacement, the effect on the CM is less significant. Both of these outcomes are consistent with previous physiological findings. Moreover, the close match between mechanical and electrical predictions of the model and experimental measurements validates the model, and suggests that further investiga- tions using the model into various pathologies and anomalies are warranted.
Twórcy
autor
  • Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
autor
  • Victoria University of Wellington, Wellington, New Zealand
  • Victoria University of Wellington, Wellington, New Zealand
Bibliografia
  • [1] Zhang M. Effects of stimulus intensity on low-frequency toneburst cochlear microphonic waveforms. Audiol Res 2013;3(1):e3.
  • [2] Teal P, Lineton B, Elliott S. An electromechanical model for the cochlear microphonic. AIP Conf Proc, vol. 1403. 2011. pp. 652–7.
  • [3] Cheatham M, Naik K, Dallos P. Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 2011;12:113–25.
  • [4] Davis H. A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 1965;30:181–90.
  • [5] Strelioff D. A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am 1973;54 (3):620–9.
  • [6] Ramamoorthy S, Deo NV, Grosh K. A mechano-electro- acoustical model for the cochlea: response to acoustic stimuli. J Acoust Soc Am 2007;121(5):2758–73.
  • [7] Nam J-H, Fettiplace R. Force transmission in the organ of Corti micromachine. Biophys J 2010;98(12):2813–21.
  • [8] Nam J-H, Fettiplace R. Optimal electrical properties of outer hair cells ensure cochlear amplification. PLoS ONE 2012;7 (11):e50572.
  • [9] Neely ST, Kim DO. A model for active elements in cochlear biomechanics. J Acoust Soc Am 1986;79(5):1472–80.
  • [10] Liu Y-W, Neely ST. Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. J Acoust Soc Am 2010;127(4).
  • [11] Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 2006;7(1):19–29.
  • [12] Mistrík P, Mullaley C, Mammano F, Ashmore J. Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound. J R Soc Interface 2009;6:279–91.
  • [13] Liu Y-W, Neely ST. Outer hair cell electromechanical properties in a nonlinear piezoelectric model. J Acoust Soc Am 2009;126:751.
  • [14] Pozrikidis C. Fluid dynamics. New York: Springer; 2009.
  • [15] Pozrikidis C. Boundary-integral modeling of cochlear hydrodynamics. J Fluids Struct 2008;24:336–65.
  • [16] Keener J, Sneyd J. Mathematical physiology: systems physiology, vol. 2. New York: Springer Verlag; 2009.
  • [17] Dallos P, Popper A, Fay R, editors. The cochlea. Springer handbook of auditory research. Springer; 1996.
  • [18] Neely ST. Mathematical modeling of cochlear mechanics. J Acoust Soc Am 1985;78:345.
  • [19] Puria S, Allen JB. A parametric study of cochlear input impedance. J Acoust Soc Am 1991;89:287.
  • [20] Mountain DC, Hubbard AE. A piezoelectric model of outer hair cell function. J Acoust Soc Am 1994;95:350.
  • [21] Dallos P. Some electrical circuit properties of the organ of Corti. I. Analysis without reactive elements. Hear Res 1983;12:89–119.
  • [22] Dallos P. Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hear Res 1984;14:281–91.
  • [23] Steele CR, Taber LA. Comparison of wkb and finite difference calculations for a two-dimensional cochlear model. J Acoust Soc Am 1979;65:1001.
  • [24] Ni G. Fluid coupling and waves in the cochlea. Ph.D. thesis. University of Southampton; 2012.
  • [25] Elliott S, Ku E, Lineton B. A state space model for cochlear mechanics. J Acoust Soc Am 2007;122(5):2759.
  • [26] Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F. Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. J Acoust Soc Am 2009;126:2425.
  • [27] Bertaccini D, Sisto R. Fast numerical solution of nonlinear nonlocal cochlear models. J Comput Phys 2011;230(7):2575–87.
  • [28] Khoo MC. Physiological control systems. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2000.
  • [29] Sisto R, Moleti A, Paternoster N, Botti T, Bertaccini D. Different models of the active cochlea, and how to implement them in the state-space formalism. J Acoust Soc Am 2010;128(3):1191–202.
  • [30] Cha PD, Rosenberg JJ, Dym CL. Fundamentals of modeling and analyzing engineering systems. United Kingdom: Cambridge University Press; 2000.
  • [31] Greenwood DD. A cochlear frequency-position function for several species – 29 years later. J Acoust Soc Am 1990;87:2592.
  • [32] Darlene R, Margaret WS, Ge Wang P, Michael WV, George AG, J Gail N. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol 1998;107(1). 1B11.
  • [33] Müller U, Gillespie P. Silencing the cochlear amplifier by immobilizing prestin. Neuron 2008;58(3):299–301.
  • [34] Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiol Rev 2001;81(3):1305–52.
  • [35] Ruggero MA, Temchin AN. Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci USA 2005;102(51):18614–9.
  • [36] Choi Y-S, Lee S-Y, Parham K, Neely ST, Kim DO. Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 2008;123:2651.
  • [37] Oxenham AJ, Shera CA. Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol 2003;4(4):541–54.
  • [38] Honrubia V, Ward PH. Longitudinal distribution of the cochlear microphonics inside the cochlear duct (guinea pig). J Acoust Soc Am 1968;44(4):951–8.
  • [39] Fridberger A, de Monvel JB, Zheng J, Hu N, Zou Y, Ren T, et al. Organ of Corti potentials and the motion of the basilar membrane. J Neurosci 2004;24(45):10057–63.
  • [40] Ayat M, Teal PD. Using circuit analogies for analysis of cochlear models. Biomed Eng Lett 2013;3(4):263–72.
  • [41] Dallos P. The active cochlea. J Neurosci 1992;2(12):4575–85.
  • [42] Nobili R, Vetešnik A, Turicchia L, Mammano F. Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model. J Assoc Res Otolaryngol 2003;4(4):478–94.
  • [43] Recio A, Rich NC, Narayan SS, Ruggero MA. Basilar- membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 1998;103:1972.
  • [44] Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 2002;419(6904):300–4.
  • [45] Kemp DT. Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 1978;64:1386.
  • [46] Nin F, Hibino H, Murakami S, Suzuki T, Hisa Y, Kurachi Y. Computational model of a circulation current that controls electrochemical properties in the mammalian cochlea. Proc Natl Acad Sci USA 2012;109(23):9191–6.
  • [47] Borg E, Canlon B, Engström B. Noise-induced hearing loss. Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions. Scand Audiol Suppl 1995;40:1–147.
  • [48] Hu B. Noise-induced structural damage to the cochlea. Noise-induced hearing loss. New York: Springer; 2012. pp. 57–86.
  • [49] Withnell RH. Brief report: the cochlear microphonic as an indication of outer hair cell function. Ear Hear 2001;22 (1):75–7.
  • [50] Killion M, Niquette P. What can the pure-tone audiogram tell us about a patient's SNR loss. Hear J 2000;53(3):46–53.
  • [51] Maoiléidigh DÓ, Hudspeth A. Effects of cochlear loading on the motility of active outer hair cells. Proc Natl Acad Sci USA 2013;110(14):5474–9.
  • [52] Duifhuis H. Cochlear mechanics. SpringerLink: Bücher. New York: Springer; 2012.
  • [53] Liberman MC. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 1982;72(5):1441–9.
  • [54] George GS. Engineering physics. Pune, India: Technical Publications; 2007.
  • [55] Misrahy GA, Hildreth KM, Shinabarger EW, Gannon WJ. Electrical properties of wall of endolymphatic space of the cochlea (guinea pig). Am J Physiol: Legacy Content 1958;194 (2):396–402.
  • [56] Rattay F, Leao RN, Felix H. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res 2001;153(1):64–79.
  • [57] Tran P, Wong P, Sue A, Li Q, Carter P. Influence of blood vessel conductivity in cochlear implant stimulation using a finite element head model. Engineering in Medicine and Biology Society (EMBC), 2013 35th Ann Inter Conf of IEEE. IEEE; 2013. pp. 5291–4.
  • [58] Wysocki J. Dimensions of the human vestibular and tympanic scalae. Hear Res 1999;135(1/2):39–46.
  • [59] Thorne M, Salt AN, DeMott JE, Henson MM, Henson O, Gewalt SL. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 1999;109 (10):1661–8.
  • [60] Keener J, Sneyd J. Mathematical physiology: systems physiology, vol. 1. New York: Springer Verlag; 2009.
  • [61] Zajic G, Schacht J. Comparison of isolated outer hair cells from five mammalian species. Hear Res 1987;26(3):249–56.
  • [62] He DZ, Evans BN, Dallos P. First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear Res 1994;78(1):77–90.
  • [63] Housley G, Ashmore J. Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 1992;448 (1):73–98.
  • [64] Breneman KD, Brownell WE, Rabbitt RD. Hair cell bundles: flexoelectric motors of the inner ear. PLoS ONE 2009;4(4): e5201.
  • [65] Johnson SL, Beurg M, Marcotti W, Fettiplace R. Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron 2011;70(6):1143–54.
  • [66] Mammano F, Ashmore JF. Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig. J Physiol 1996;496(Pt 3):639–46.
  • [67] Ashmore J. Pushing the envelope of sound. Neuron 2011;70 (6):1021–2.
  • [68] Ayat M, Teal D, Paul. Modelling the generation of the cochlear microphonic. Engineering in Medicine and Biology Society, 2013. EMBC 2013. Annual International Conference of the IEEE; 2013. pp. 7168–71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf2b964c-5356-47cd-8d01-dbf9070aa613
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.