Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
URI
10.15199/48.2019.12.42
Warianty tytułu
Uczenie maszynowe w rekonstrukcji obrazu z użyciem elektrod wieloczujnikowych
Języki publikacji
Abstrakty
The article presents a system that uses machine learning to reconstruct the image using multi-sensor electrodes based on electric tomography. It is an innovative approach to testing the properties of test areas, including levees. The measuring system was based on an electric tomography device, which assumes the use of two measuring methods and allows measurements to be made to 32 channels. The device based on electric impedance tomography measures the tested object based on the potential distribution measurements. The system collects measured data from the electrodes. In the process of image reconstruction, the elastic net method was used, where appropriate regularization methods help in choosing the optimal solution.
W artykule przedstawiono system wykorzystujący uczenie maszynowe do rekonstrukcji obrazu za pomocą elektrod wieloczujnikowych oparty na tomografii elektrycznej. Jest to innowacyjne podejście do badania właściwości obszarów testowych, w tym wałów przeciwpowodziowych. System pomiarowy został oparty na urządzeniu do tomografii elektrycznej, który zakłada stosowanie dwóch metod pomiarowych i umożliwia wykonanie pomiarów do 32 kanałów. Urządzenie oparte na elektrycznej tomografii impedancyjnej mierzy badany obiekt w oparciu o pomiary rozkładu potencjału. System zbiera zmierzone dane z elektrod. W procesie rekonstrukcji obrazu zastosowana metodę elastycznej siatki, gdzie odpowiednie metody regularyzacji pomagają w wyborze optymalnego rozwiązania.
Wydawca
Czasopismo
Rocznik
Tom
Strony
188--191
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Research & Development Centre Netrix S.A.
- University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
- Lublin University of Technology, Nadbystrzycka 38A, Lublin, Poland
autor
- Research & Development Centre Netrix S.A.
autor
- Research & Development Centre Netrix S.A.
autor
- University of Economics and Innovation, Projektowa 4
autor
- Research & Development Centre Netrix S.A.
- University of Economics and Innovation, Projektowa 4, Lublin, Poland
Bibliografia
- [1] Rymarczyk T., Kozlowski E., Niderla K., Rymarczyk, P., Sikora, J., Applying multi-sensor electrodes for image reconstruction by machine learning methods, 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 2019, 166-170.
- [2] Adler A. and Lionheart W., Uses and abuses of EIDORS: An extensible software base for EIT, Phys. Meas., 27 (2006), 25- 42.
- [3] Borcea L, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.
- [4] Holder D., Introduction to biomedical electrical impedance tomography Electrical Impedance Tomography Methods, History and Applications, Bristol, Institute of Physics, 2005.
- [5] Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J., Moisture Wall Inspection Using Electrical Tomography Measurements, Przegląd Elektrotechniczny, 94 (2018), No 94, 97-100
- [6] Duda K., Adamkiewicz P., Rymarczyk T., Niderla K., Nondestructive Method to Examine Brick Wall Dampness, International Interdisciplinary PhD Workshop Location: Brno, Czech Republic Date: SEP 12-15, 2016, 68-71
- [7] Babout L., Grudzień K., Wiącek J., Niedostatkiewicz M., Karpiński B., and Szkodo M., Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins, Granul. Matter, 20 (2018), No. 3, 38.
- [8] R. Banasiak, R. Wajman, T. Jaworski, P. Fiderek, H. Fidos, J. Nowakowski, Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification, International Journal of Multiphase Flow, vol. 58, 2014, pp. 1-14. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019 191
- [9] Beck M. S., Byars M., Dyakowski T., Waterfall R., He R., Wang S. J., Yang W. Q., Principles and Industrial Applications of Electrical Capacitance Tomography, Measurement and Control, September, 30 (1997), No. 7.
- [10] Chaniecki Z., Romanowski A., Nowakowski J., Niedostatkiewicz M., Application of twin-plane ECT sensor for identification of the internal imperfections inside concrete beams Grudzien, IEEE Instrumentation and Measurement Technology Conference, 2016, 7520512.
- [11] Grudzien K., Romanowski A., Chaniecki Z., Niedostatkiewicz M., Sankowski D., Description of the silo flow and bulk solid pulsation detection using ECT, Flow Measurement and Instrumentation, 21 (2010), No. 3, 198-206.
- [12] Kryszyn J. and Smolik W., Toolbox for 3D modelling and image reconstruction in electrical capacitance tomography, Informatics Control Meas. Econ. Environ. Prot., 2017.
- [13] Kryszyn J., Smolik W., Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 137-145
- [14] Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D., Acceleration of image reconstruction process in the electrical capacitance tomography 3d in heterogeneous, multi-gpu system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 37-41.
- [15] Nowakowski J., Ostalczyk P., Sankowski D., Application of fractional calculus for modelling of two-phase gas/liquid flow system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 42-45.
- [16] Romanowski A., Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process, 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2018, 283-286.
- [17] Wajman R., Fiderek P., Fidos H., Sankowski D., Banasiak R., Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Measurement Science and Technology, 24 (2013), No. 6, 065302.
- [18] Ye Z.., Banasiak R., Soleimani M., Planar array 3D electrical capacitance tomography, Insight: Non-Destructive Testing and Condition Monitoring, 55 (2013), No. 12, 675-680
- [19] Romanowski, A.; Łuczak, P.; Grudzień, K. X-ray Imaging Analysis of Silo Flow Parameters Based on Trace Particles Using Targeted Crowdsourcing, Sensors, 19 (2019), No. 15, 3317
- [20] Bartušek K.; Fiala P., Mikulka J., Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System, Radioengineering, 17 (2008), No.4, 113-118.
- [21] Goetzke-Pala A., Hoła J., Influence of burnt clay brick salinity on moisture content evaluated by non-destructive electric methods. Archives of Civil and Mechanical Engineering., 16 (2016), No. 1, 101-111.
- [22] Kozlowski E., Mazurkiewicz D., Kowalska B., et al., Binary Linear Programming as a Decision-Making Aid for Water Intake Operators, 1st International Conference on Intelligent Systems in Production Engineering and Maintenance (ISPEM), Wroclaw, Poland, Sep 28-29.2017, Book Series: Advances in Intelligent Systems and Computing, 637 (2018), 199-208.
- [23] Krawczyk A., Korzeniewska E., Łada-Tondyra E., Magnetophosphenes - History and contemporary implications, Przeglad Elektrotechniczny, 94 (2018), No 1, 61-64.
- [24] Korzeniewska E., Gałązka-Czarnecka I., Czarnecki A., Piekarska A., Krawczyk A., Influence of PEF on antocyjans in wine Przeglad Elektrotechniczny, 94 (2018), No 1, 2018, 57-60.
- [25] Lopato P., Herbko M., A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation, Sensors, 18 (2018), No. 1, 310.
- [26] Psuj G., Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements, Sensors, 18 (2018), No. 1, 292.
- [27] Romanowski A., Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography, in IEEE Transactions on Industrial Informatics, 15 (2019), No. 3, 1609- 1618.
- [28] Rymarczyk T., Filipowicz S.F., The Shape Reconstruction of Unknown Objects for Inverse Problems, Przegląd Elektrotechniczny, 88 (2012), No 3a, 55-57
- [29] Szczęsny A., Korzeniewska E., Selection of the method for the earthing resistance measurement, Przegląd Elektrotechniczny, 94 (2018), No. 12, 178-181.
- [30] Valis D., Mazurkiewicz D., Application of selected Levy processes for degradation modelling of long range mine belt using real-time data, Archives of Civil and Mechanical Engineering, 18 (2018), No. 4, 1430-1440.
- [31] Valis D., Mazurkiewicz D., Forbelska M., Modelling of a Transport Belt Degradation Using State Space Model, Conference: IEEE International Conference on Industrial Engineering and Engineering Management (IEEE IEEM)Location: Singapore, Dec. 10-13, 2017, Book Series: International Conference on Industrial Engineering and Engineering Management IEEM, 2017, 949-953.
- [32] Ziolkowski M., Gratkowski S., and Zywica A. R., Analytical and numerical models of the magnetoacoustic tomography with magnetic induction, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 37 (2018), No. 2, 538-548.
- [33] Jiang Y., Soleimani M., Wang B., Contactless electrical impedance and ultrasonic tomography, correlation, comparison and complementary study, Measurement Science and Technology, 30 (2019), 114001
- [34] Vališ D, Hasilová K., Forbelská M, Vintr Z, Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data, Measurement 149 (2020), 107026
- [35] Galazka-Czarnecka, I.; Korzeniewska E., Czarnecki A. et al., Evaluation of Quality of Eggs from Hens Kept in Caged and Free-Range Systems Using Traditional Methods and Ultra- Weak Luminescence, Applied sciences-basel, 9 (2019), No. 12, 2430.
- [36] Kozłowski E., Mazurkiewicz D., Żabiński T., Prucnal S., Sęp J., Assessment model of cutting tool condition for real-time supervision system, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No 4, 679-685
- [37] Rymarczyk T, Kłosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No. 2, 261-267
- [38] Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography, Sensors, 19 (2019), 3400.
- [39] Wang M., Industrial Tomography: Systems and Applications, Elsevier, 2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf2a631f-48e7-46bb-9a64-a1d6de6ca766