PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the study was to determine the influence of the penetrator geometry on the human cancellous bone mechanical properties in indentation tests. The aim of this research was also the assessment of the material properties of bone structures, having in mind the energy aspects of the curve obtained in the cycle: inelastic loading and elastic unloading. Methods: The samples were resected from a femoral heads of patients qualified for a hip replacement surgery. During the Depth Sensing Indentation tests, hardness and elastic modulus of the cancellous bone tissue were measured using the spherical and Vickers penetrators. Measurements were made in a node and in a trabecula for each sample. Results: The analysis of the measurement results and the calculations of total energy, i.e., elastic and inelastic, and those of the parameters of hardness and elasticity made it possible to assess the influence of the penetrator geometry on the mechanical properties of bone structures at a microscopic level. Conclusions: It was found, with respect to the methodology of indentation, that without determining the shape of the penetrator and the site of the indentation, an objective assessment of the micro mechanical properties of the tested material is not possible.
Rocznik
Strony
153--164
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Precision Mechanics, Departament of Mechanical Properties, Warsaw, Poland
  • Institute of Precision Mechanics, Departament of Mechanical Properties, Warsaw, Poland
Bibliografia
  • [1] ANTUNES J.M., MENEZES L.F., FERNANDES J.V., Influence of Vickers tip imperfection on depth sensing indentation tests, Int. J. Solids Struct., 2007, 44, 2732–2747.
  • [2] COUTTS L.V., JENKINS T., LI T., DUNLOP D.G., OREFFO R.O., COOPER C., HARVEY N.C., THURNER P.J., Variability in reference point microindentation and recommendations for testing cortical bone: Location, thickness and orientation heterogeneity, J. Mech. Behav. Biomed. Mater., 2015, 46, 292–304.
  • [3] DALL’ARA E., ÖHMAN C., BALEANI M., VICECONTI M., Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis, J. Biomech., 2011, 44, 1593–1598.
  • [4] DEMIRAL M., ABDEL-WAHAB A., SILBERSCHMIDT V., A numerical study on indentation properties of cortical bone tissue: Influence of anisotropy, Acta Bioeng. Biomech., 2015, 17(2), 3–14.
  • [5] FAN Z., RHO J.Y., Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone, J. Biomed. Mater. Res. A, 2003, 67(1), 208–214.
  • [6] GUBICZA J., JUHASZ A., TASNADI P., ARATO P., VOROS G., Determination of the hardness and elastic modulus from continuous Vickers, J. Mater. Sci., 1996, 31, 3109–3114.
  • [7] HAUŠILD P., NOHAVA J., MATERNA A., Identification of stressstrain relation of austenitic steels by instrumented indentation, Chem. Letters, 2011, 105, 676–679.
  • [8] ISAKSSON H., NAGAO S., MAŁKIEWICZ M., JULKUNEN P., SMITH R., JURVELIN J.S., Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone, J. Biomech., 2010, 43, 2410–2417.
  • [9] JIROUŠEK O., Nanoindentation of Human trabecular bone – Tissue Mechanical Properties Compared to Standard Test Methods Engineering, Nanoindentation in Materials Science, 2012.
  • [10] JOHNSON W.M., RAPOFF A.J., Microindentation in bone: Hardness variation with five independent variables, J. Mater. Sci. – Mater. M., 2007, 18, 591–597.
  • [11] KATSAMENIS O.L., JENKINS T., THURNER P.J., Toughness and damage susceptibility in human cortical bone is proportional to mechanical in homogeneity at the osteonal-level, Bone, 2015, 76, 158–168.
  • [12] LAU M.L., LAU K.T., KU H., BAHATTACHARYYA D., YAO Y.D., Measurements of Heat Treatment Effects on Bovine Cortical Bones by Nanoindentation and Compression, J. Biomat. Nanobiotech., 2012, 3, 105–113.
  • [13] MAKUCH A., SKALSKI K., PAWLIKOWSKI M., The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues, Acta Bioeng. Biomech., 2017, 19(2), 79–91.
  • [14] MAZERAN P.E., BEYAOUI M., BIGERELLE M., GUIGON M., Determination of mechanical properties by nanoindentation in the case of viscous materials, Int. J. Mat. Res., 2012, 103(6), 715–721.
  • [15] MENČÍK J., Uncertainties and Errors in Nanoindentation, Nanoindentation in Materials Science, InTech, Jiri Nemecek (ed.), 2012.
  • [16] OLIVEIRA G.L., COSTA C.A., TEIXEIRA S.C.S., COSTA M.F., The use of nano- and micro-instrumented indentation tests to evaluate viscoelastic behavior of poly (vinylidene fluoride) (PVDF), Polym. Test., 2014, 34, 10–16.
  • [17] OLIVIER W.C., PHARR G.M., An improved technique for Determining hardness and elastic modulus-using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7(6), 1564–1583.
  • [18] RODRIGUEZ-FLOREZ N., OYEN M.L., SHEFELBINE S.J., Insight into differences in nanoindentation properties of bone, J. Mech. Behav. Biomed. Mater., 2013, 18, 90–99.
  • [19] SAKAI M., Time-dependent viscoelastic relation between load and penetration for an axisymmetric Indenter, Philos. Mag. A, 2002, 82(10), 1841–1849.
  • [20] SAKHAROV N.A., FERNANDES J.V., ANTUNES J.M., OLIVEIRA M.C., Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study, Int. J. Solids. Struct., 2009, 46, 1095–1104.
  • [21] SNEDDON I.N., The relation between load and penetration in the axisymmetric Boussinesq a problem for a punch of arbitrary profiles, Int. J. Eng. Sci., 1965, 3(1), 47–57.
  • [22] TOMANIK M., NICODEMUS A., FILIPIAK J., Microhardness of human cancellous bone tissue in progressive hip osteoarthritis, J. Mech. Behav. Biomed. Mater., 2016, 64, 86–93.
  • [23] VOYIADJIS G.Z., ALMASRI A.H., PARK T., Experimental nanoindentation of BCC metals, Mech. Res. Commun., 2010, 37(3), 307–314.
  • [24] WU Z., BAKER T.A., OVAERT T.C., NIEBUR G.L., The effect of holding time on nanoindentation measurements of creep in bone, J. Biomech., 2011, 44, 1066–1072.
  • [25] ZHAO M., OGASAWARA N., CHIBA N., CHEN X., A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation, Acta Mater., 2006, 54, 23–32.
Uwagi
The study was financed by the National Science Centre of Poland – project No. 2014/15/B/ST7/03244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf270e70-12ad-4f21-9f96-cc76c73ef9e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.