PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on influence of electrical process parameters in EDM process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the thermal energy produced in electrical discharge machining process is due to the applied electrical energy, it is very important to enhance the electrical process parameters to improve the process efficiency. The present study discusses about having an overview of the EDM process, modeling of process parameters, and influence of process parameters such as input electrical variables, pulse shape, and discharge energy on performance measures such as material removal rate, surface roughness and electrode wear rate. This study also discusses about controlling the electrical process parameters, and empirical relationships between process parameters and optimization of process parameters in EDM process. From the review results, it has been observed that the efficacy of the machining process can be improved by electrical process parameters, and only less attention has been given for enhancing such parameters.
Słowa kluczowe
Rocznik
Strony
87--94
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
  • Department of Mechatronics Engineering, SRM University, Kattankulathur, India
autor
  • Department of Mechanical Engineering, CEG Campus, Anna University, Chennai, India
Bibliografia
  • [1] E.C. Jameson, Electrical Discharge Machining, first ed., Society of Manufacturing Engineers, Michigan, 2001.
  • [2] K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools and Manufacture 43 (2003) 1287–1300.
  • [3] N.M. Abbas, D.G. Solomon, M. Fuad Bahari, A review on current research trends in electrical discharge machining, International Journal of Machine Tools and Manufacture 47 (2007) 1214–1228.
  • [4] S. Kumar, R. Singh, T.P. Singh, B.L. Sethi, Surface modification by electrical discharge machining: a review, Journal of Materials Processing Technology 209 (2009) 3675–3687.
  • [5] M.P. Jahan, Y.S. Wong, M. Rahman, A study on the fine-finish die-sinking micro EDM of tungsten carbide using different electrode materials, Journal of Materials Processing Technology 209 (2009) 3956–3967.
  • [6] F. Han, L. Chen, D. Yu, X. Zhou, Basic study on pulse generator for micro EDM, International Journal of Advanced Manufacturing Technology 33 (2007) 474–479.
  • [7] M.T. Yan, Y.T. Liu, Design analysis and experimental study of a high frequency power supply for finish cut of wire EDM, International Journal of Machine Tools and Manufacture 49 (2009) 793–796.
  • [8] M.T. Yan, T.L. Chiang, Design and experimental study of a power supply for micro wire EDM, International Journal of Advanced Manufacturing Technology 40 (2009) 1111–1117.
  • [9] T. Muthuramalingam, B. Mohan, Enhancing the surface quality process by iso pulse generator in EDM process, Advanced Materials Research 622/623 (2013) 375–380.
  • [10] F. Han, S. Wachi, M. Kunieda, Improvement of machining characteristics of micro-EDM using transistor type iso pulse generator and servo feed control, Precision Engineering 28 (2004) 378–385.
  • [11] M.T. Yan, Y.P. Lai, Surface quality improvement of wire-EDM using a fine-finish power supply, International Journal of Machine Tools and Manufacture 47 (2007) 1686–1694.
  • [12] T. Muthuramalingam, B. Mohan, Design and fabrication of control system based iso pulse generator for electrical discharge machining, International Journal of Mechatronics and Manufacturing Systems 6 (2013) 133–143.
  • [13] R. Casanueva, F.J. Azcondo, S. Bracho, Series-parallel resonant converter for an EDM power supply, Journal of Materials Processing Technology 149 (2004) 172–177.
  • [14] M. Ghoreishi, C. Tabari, Investigation into the effect of voltage excitation of pre-ignition spark pulse on the electro-discharge machining process, Materials and Manufacturing Processes 22 (2007) 833–841.
  • [15] Y.Y. Tsai, C.T. Lu, Influence of current impulse on machining characteristics in EDM, Journal of Mechanical Science and Technology 21 (2007) 1617–1621.
  • [16] T. Muthuramalingam, B. Mohan, Influence of discharge current pulse on machinability in electrical discharge machining, Materials and Manufacturing Processes 28 (2013) 375–380.
  • [17] S.M. Son, H.S. Lim, A.S. Kumar, M. Rahman, Influences of pulsed power condition on the machining properties in micro EDM, Journal of Materials Processing Technology 190 (2007) 73–76.
  • [18] K. Liu, D. Reynaerts, B. Lauwers, Influence of the pulse shape on the EDM performance of Si3N4–TiN ceramic composite, CIRP Annals – Manufacturing Technology 58 (2009) 217–220.
  • [19] V. Janardhan, G.L. Samuel, Pulse train data analysis to investigate the effect of machining parameters on the performance of wire electro discharge turning process, International Journal of Machine Tools and Manufacture 50 (2010) 775–788.
  • [20] S.H. Yeo, E. Aligiri, P.C. Tan, H. Zarepour, A new pulse discriminating system for micro-EDM, Materials and Manufacturing Processes 24 (2009) 1297–1305.
  • [21] T. Muthuramalingam, B. Mohan, Experimental investigation of iso energy pulse generator on performance measures in EDM, Materials and Manufacturing Processes 28 (2013) 1137–1142.
  • [22] M. Gostimirovic, P. Kovac, B. Skoric, M. Sekulic, Effect of electrical process parameters on the machining performance in EDM, Indian Journal of Engineering and Materials Sciences 18 (2012) 411–415.
  • [23] B. Mohan, A. Rajadurai, K.G. Satyanarayana, Effect of SiC and rotation of electrode on electric discharge machining of Al– SiC composite, Journal of Materials Processing Technology 124 (2002) 297–304.
  • [24] B. Nowicki, A. Dmowska, A.P. Lejtas, Morphology of traces made by individual electric discharge in the EDM, Advances in Manufacturing Science and Technology 33 (2009) 5–24.
  • [25] B. Mohan, A. Rajadurai, K.G. Satyanarayana, Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode, Journal of Materials Processing Technology 153/154 (2004) 978–985.
  • [26] Y.W. Seo, D. Kim, M. Ramulu, Electrical discharge machining of functionally graded 15–35 vol% SiCp/Al composites, Materials and Manufacturing Processes 21 (2006) 479–487.
  • [27] I. Puertas, C.J. Luis, L. Alvarez, Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC-Co, Journal of Materials Processing Technology 153/154 (2004) 1026–1032.
  • [28] A. Yahya, C.D. Manning, Determination of material removal rate of an electro discharge machine using dimensional analysis, Journal of Physics D: Applied Physics 37 (2004) 1467–1471.
  • [29] J.T. Huang, Y.S. Liao, W.J. Hsue, Determination of finish-cutting operation number and machining parameters setting in wire electrical discharge machining, Journal of Materials Processing Technology 87 (1999) 69–81.
  • [30] P. Kuppan, A. Rajadurai, S. Narayanan, Influence of EDM process parameters in deep hole drilling of Inconel 718, International Journal of Advanced Manufacturing Technology 38 (2008) 74–84.
  • [31] K.M. Patel, P.M. Pandey, P.V. Rao, Understanding the role of weight percentage and size of silicon carbide particulate reinforcement on electro-discharge machining of aluminium based composites, Materials and Manufacturing Processes 23 (2008) 665–673.
  • [32] N. Pelicer, J. Ciurana, T. Ozel, Influence of process parameters and electrode geometry on feature micro-accuracy in electro discharge machining of tool steel, Materials and Manufacturing Processes 24 (2009) 1282–1289.
  • [33] D. Wang, W.S. Zhao, L. Gu, X.M. Kang, A study on micro hole machining of poly crystalline diamond by micro- electrical discharge machining, Journal of Materials Processing Technology 211 (2011) 3–11.
  • [34] N. Tosun, C. Cogun, G. Tosun, A study on kerf and material removal rate in wire electrical discharge machining based onTaguchi method, Journal of Materials Processing Technology 152 (2004) 316–322.
  • [35] R. Ji, Y.H. Liu, Y.Z. Zhang, B.O. Cai, X.P. Li, High speed end electric discharge milling of silicon carbide ceramics, Materials and Manufacturing Processes 26 (2011) 1050–1058.
  • [36] J.C. Rebelo, A.M. Dias, R. Mesquita, P. Vassalo, M. Santos, An experimental study on electro-discahrge machining and polishing of high strength copper–beryllium alloys, Journal of Materials Processing Technology 103 (2000) 389–397.
  • [37] P.H. Yu, H.K. Lee, Y.X. Lin, S.J. Qin, Machining characteristics of poly crystalline silicon by wire electrical discharge machining, Materials and Manufacturing Processes 26 (2011) 1443–1450.
  • [38] A. Batish, A. Bhattacharya, V.K. Singla, G. Singh, Study of material transfer mechanism in die steels using powder mixed electric discharge machining, Materials and Manufacturing Processes 27 (2012) 449–456.
  • [39] K.M. Patel, P.M. Pandey, P.V. Rao, Surface integrity and material removal mechanisms associated with the EDM of Al2O3 ceramic composite, International Journal of Refractory Metals and Hard Materials 27 (2009) 892–899.
  • [40] M.P. Jahan, Y.S. Wong, M. Rahman, A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator, Journal of Materials Processing Technology 209 (2009) 1706–1716.
  • [41] S.H. Yeo, P.C. Tan, E. Aligiri, S.B. Tor, N.H. Loh, Processing of zirconium based bulk metallic glass using micro electrical discharge machining, Materials and Manufacturing Processes 24 (2009) 1242–1248.
  • [42] A.K. Khanra, L.C. Pathak, M.M. Godkhindi, Micro analysis of debris formed during electrical discharge machining, Journal of Materials Science 42 (2007) 872–877.
  • [43] M.S. Popa, G. Contiu, G. Pop, P. Dan, New technologies and applications of EDM process, The International Journal of Material Forming 2 (2009) 633–636.
  • [44] A. Kojima, W. Natsu, M. Kunieda, Spectroscopic measurement of arc plasma diameter in EDM, CIRP Annals – Manufacturing Technology 57 (2008) 203–207.
  • [45] Y.S. Wong, M. Rahman, H.S. Lim, H. Han, N. Ravi, Investigation of micro-EDM material removal characteristics using single RC-pulse discharges, Journal of Materials Processing Technology 140 (2003) 303–307.
  • [46] Y.H. Guu, K.L. Tsai, L.K. Chen, An experimental study on electrical discharge machining of manganese–zinc ferrite magnetic material, Materials and Manufacturing Processes 22 (2007) 66–70.
  • [47] B. B. Nowicki, R. Pierzynowski, S. Spadlo, The superficial layer of parts machined by brush electro discharge mechanical machining (BEDMM), Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 218 (2004) 1–8.
  • [48] H. Singh, Experimental study of distribution of energy during EDM process for utilization in thermal models, International Journal of Heat and Mass Transfer 55 (2012) 5053–5064.
  • [49] M.T. Yan, An adaptive control system with self organizing fuzzy sliding mode control strategy for micro wire EDM machine, International Journal of Advanced Manufacturing Technology 50 (2010) 315–328.
  • [50] U. Caydas, A. Hascalik, Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology, International Journal of Advanced Manufacturing Technology 38 (2008) 1148–1156.
  • [51] O. Yilmaz, O. Eyercioglu, N.N.Z. Gindy, A user friendly fuzzy based system for the selection of electro discharge machining process parameters, Journal of Materials Processing Technology 172 (2006) 363–371.
  • [52] M. Zhou, F. Han, Adaptive control for EDM process with a self tuning regulator, International Journal of Machine Tools and Manufacture 49 (2009) 462–469.
  • [53] M.T. Yan, H.T. Chien, Monitoring and control of the micro wire-EDM process, International Journal of Machine Tools and Manufacture 47 (2007) 148–157.
  • [54] X.F. Chang, Mixed H2/H1 optimization approach to gap control on EDM, Control Engineering Practice 13 (2005) 95–104.
  • [55] A. Behrens, J. Ginzel, Neuro-fuzzy processes control system for sinking EDM, Journal of Manufacturing Processes 5 (2003) 33–39.
  • [56] C.C. Kao, A.J. Shih, Sub-nano second monitoring of micro-hole electrical discharge machining pulses and modeling of discharge ringing, International Journal of Machine Tools and Manufacture 46 (2006) 1996–2008.
  • [57] H. Tong, Y. Li, Y. Wang, D. Yu, Servo scanning 3D micro-EDM based on macro/micro dual feed machine, International Journal of Machine Tools and Manufacture 48 (2008) 858–869.
  • [58] C. Fenggou, Y. Dayong, The study of high efficiency and intelligent optimization system in EDM sinking process, Journal of Materials Processing Technology 149 (2004) 83–87.
  • [59] S. Liu, Y. Huang, Y. Li, A plate capacitor model of the EDM process based on the field emission theory, International Journal of Machine Tools and Manufacture 51 (2011) 653–659.
  • [60] S. Das, S.S. Joshi, Modelling of spark erosion rate in micro wire-EDM, International Journal of Advanced Manufacturing Technology 48 (2010) 581–596.
  • [61] K. Salonitis, A. Stournaras, P. Stavropoulos, G. Chryssolouris, Thermal modeling of the material removal rate and surface roughness for die-sinking EDM, International Journal of Advanced Manufacturing Technology 40 (2009) 316–323.
  • [62] S. Spadlo, J. Kozak, P. Mlynarczyk, Mathematical modelling of the electrical discharge mechanical alloying process, Procedia CIRP 6 (2013) 423–427.
  • [63] J. Marafona, C. Wykes, A new method of optimizing material removal rate using EDM with copper–tungsten electrodes, International Journal of Machine Tools and Manufacture 40 (2000) 153–164.
  • [64] P. Matoorian, S. Sulaiman, M.M.H.M. Ahmed, An experimental study for optimization of electrical discharge turning process, Journal of Materials Processing Technology 204 (2008) 350–356.
  • [65] T. Muthuramalingam, B. Mohan, Multi response optimization of electrical process parameters on machining characteristics in EDM using Taguchi-DEAR methodology, Journal of Engineering Technology 3 (2013) 57–60.
  • [66] Y.F. Tzeng, F.C. Chen, Multi objective optimisation of high speed electrical discharge machining process using Taguchi fuzzy based approach, Materials and Design 28 (2007) 1159–1168.
  • [67] S. Kuriakose, M.S. Shunmugam, Multi-objective optimization of wire-electrical discharge machining process by non-dominated sorting genetic algorithm, Journal of Materials Processing Technology 170 (2005) 133–141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf26feef-13b2-4592-a8e7-d4ee2e317483
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.