Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
DNA i RNA-zależna analiza genów bakterii przemian azotowych metodą qPCR
Języki publikacji
Abstrakty
Improvements in water quality requires the removal of nitrogen compounds from wastewater. The most promising and cost-effective methods for this purpose are biological ones based on activated sludge microorganisms such as nitrifiers, denitrifiers, and anammox bacteria. Due to the most of the nitrogen removal bacteria are uncultivable in a laboratory, the application of the molecular tools is required to investigate microorganisms involved in the nitrogen removal. In case of this study for the analysis of relative genes abundance of nitrogen removal bacteria, quantitative PCR (qPCR) based on bacterial DNA and qPCR preceded by reverse transcription (RT-qPCR) based on bacterial mRNA as a template, were used with specific bacterial functional genes (amoA, nrxA, nirS, nirK, hzo). Samples from four anammox sequencing batch reactors (SBRs) were analyzed, while the nitrogen removal process and bacteria growth were supported by biomass immobilization and nanoparticles addition. There were statistically significant differences between results obtained in the case of mRNA and DNA (p<0.05). Statistically significant positive correlations were found between results obtained with those two approaches. In case of mRNA analysis, positive results were obtained only for hzo, amoA and partly for nirS genes, despite additional purification and removal of inhibitors from samples prior to reaction.
Z uwagi na to, że większości bakterii przemian związków azotowych nie można wyizolować w postaci czystych kultur, do ich zbadania konieczne jest zastosowanie metod biologii molekularnej. Jedną z najczęściej stosowanych w tym celu jest ilościowa reakcja łańcuchowa polimerazy (ang. Quantitative Polimerase Chain Reaction, qPCR). Celem eksperymentu było porównanie wyników analizy wybranych genów funkcyjnych bakterii przemian związków azotowych przy pomocy metody qPCR wykonanej na matrycy DNA i RNA (po odwrotnej transkrypcji). Względna liczebności genów funkcyjnych analizowana była z zastosowaniem metody qPCR (na matrycy DNA) oraz RT-qPCR (ang. Reverse Transcription-qPCR) (na matrycy RNA). Analizę przeprowadzono w oparciu o geny: amoA, nrxA, nirS, nirK i hzo. Próbki osadu czynnego pobrano z czterech sekwencyjnych reaktorów porcjowych, w których proces usuwania azotu i wzrostu bakterii wspomagano za pomocą immobilizacji biomasy i dodatkiem nanocząstek. Wykazano statystycznie istotne różnice między wynikami uzyskanymi w przypadku badań mRNA i badań opartych na DNA (p<0,05). Wyniki uzyskane za pomocą zastosowanych narzędzi biologii molekularnej (qPCR, RT-qPCR) były skorelowane pozytywnie. W przypadku analizy opartej na mRNA pozytywne wyniki uzyskano tylko dla genów hzo, amoA i częściowo dla genów nirS, pomimo dodatkowego oczyszczania i usuwania inhibitorów z próbek przed reakcją. Należy podkreślić, że w zależności od matrycy zastosowanej w qPCR (bakteryjne DNA lub cDNA zsyntetyzowane z bakteryjnego mRNA w procesie odwrotnej transkrypcji) uzyskane wyniki mogą wskazywać na różne informacje naukowe. Pomimo znaczących różnic pomiędzy wynikami otrzymanymi za pomocą dwóch metod, obliczone współczynniki korelacji Spearmana wskazują na wzajemne powiązanie pomiędzy otrzymanymi wynikami oraz powiązania ekologiczne pomiędzy bakteryjnymi genami przemian związków azotowych.
Czasopismo
Rocznik
Tom
Strony
19--25
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Gliwice, Poland
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Gliwice, Poland
Bibliografia
- 1. Abzazou, T., Salvadó, H., Cárdenas-Youngs, Y., Becerril-Rodríguez, A., Cebirán, E.M.C., Huguet, A. & Araujo, R.M. (2018). Characterization of nutrient-removing microbial communities in two full-scale WWTP systems using a new qPCR approach, Sci. Total Environ., 618, pp. 858-865, DOI: 10.1016/j.scitotenv.2017.08.241.
- 2. Banach, A., Pudlo, A. & Ziembińska-Buczyńska, A. (2018). Immobilization of Anammox biomass in sodium alginate. In E3S Web of Conferences (Vol. 44, pp. 00008). EDP Sciences, DOI: 10.1051/e3sconf/20184400008
- 3. Banach-Wiśniewska, A., Ćwiertniewicz-Wojciechowska, M. & Ziembińska-Buczyńska, A. (2020a). Effect of temperature shifts and anammox biomass immobilization on sequencing batch reactor performance and bacterial genes abundance, Sci, Technol. 1-12, DOI: 10.1007/s13762-020-02957-w.
- 4. Banach-Wiśniewska, A., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2020). Medium shift influence on nitrogen removal bacteria: Ecophysiology and anammox process performance, Chemosphere, 238, 124597, DOI: https://doi.org/10.1016/j.chemosphere.2019.124597.
- 5. Barnes, M.A. & Turner, C.R. (2016). The ecology of environmental DNA and implications for conservation genetics, Conserv. Genet., 17(1), pp. 1-17, DOI: 10.1007/s10592-015-0775-4.
- 6. Calli, B., Mertoglu, B., Roest, K. & Inanc, B. (2006). Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate, Bioresour. Technol., 97(4), pp. 641-647, DOI: 10.1016/j.biortech.2005.03.021.
- 7. Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E. & Likens, G.E. (2009). Controlling eutrophication: nitrogen and phosphorus, Science pp. 1014-1015, DOI: 10.1126/science.1167755.
- 8. Dodds, W.S. & Smith, V.H. (2016). Nitrogen, phosphorus and eutrophication in stream, Island Waters, 6:2, 155-162, DOI: 10.5268/IW-6.2.909.
- 9. Ding, C., Adrian, L., Peng, Y. & He, J. (2020). 16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria, FEMS Microbiol. Ecol., 96(3), DOI: 10.1093/femsec/fiaa013.
- 10. Gerbl, F.W., Weidler, G.W., Wanek, W., Erhardt, A. & Stan-Lotter, H. (2014). Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps, Front. Microbiol., 5, 225, DOI: 10.3389/fmicb.2014.00225.
- 11. Gilbert, E.M., Agrawal, S., Schwartz, T., Horn, H. & Lackner, S. (2015). Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures, Water Res., 81, 92-100. DOI: 10.1016/j.watres.2015.05.022.
- 12. Härtig, E. & Zumft, W.G. (1999). Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate-and nitrite-responsive regulatory system, J. Bacteriol., 181, pp. 161-166, DOI: 10.1128/JB.181.1.161-166.1999.
- 13. Jiang, R., Wang, J.G., Zhu, T., Zou, B., Wang, D.Q., Rhee, S.K. & Quan, Z.X. (2020). Use of Newly Designed Primers for Quantification of Complete Ammonia-Oxidizing (Comammox) Bacterial Clades and Strict Nitrite Oxidizers in the Genus Nitrospira, Appl. Environmen. Microbiol., 86(20), DOI: 10.1128/AEM.01775-20.
- 14. Kim, Y.M., Lee, D.S., Park, C., Park, D. & Park, J.M. (2011). Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial sludge process, Water Res., 45, pp. 1267-1279, DOI: 10.1016/j.watres.2010.10.003.
- 15. Li, X., Xiao, Y.P., Ren, W.W., Liu, Z.F., Shi, J.H. & Quan, Z.X. (2012). Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary, J Zhejiang Univ-Sci B (Biomed Biotechnol), 13, pp. 769-782, DOI: 10.1631/j.zus.B1200013.
- 16. Lindeman, S., Zarnoch, C.B., Castignetti, D. & Hoellein, T.J. (2016). Effect of eastern oysters (Crassostrea virginica) and seasonality on nitrite reductase gene abundance (nirS, nirK, nrfA) in an urban estuary, Estuaries and Coasts, 39 (1), 218-232, DOI: 10.1007/s12237-015-9989-4.
- 17. Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 23, pp. 402-408, DOI: 10.1006/meth.2001.1262.
- 18. Regier, N. & Frey, B. (2010). Experimental comparison of relative RT-qPCR quantification approaches for gene expression studies in poplar, BMC Mol. Biol., 11 (1), 57, DOI: https://doi.org/10.1186/1471-2199-11-57.
- 19. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J., Schleifer, K.H. & Wagner, M. (2000). Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation, Sys. Appl. Microbiol., 23, 93-106, DOI: 10.1016/S0723-2020(00)80050-8.
- 20. Sharma, R., Ranjan, R., Kapardar, R.K. & Grover, A. (2005). “Unculturable” bacterial diversity: An untapped resource, Current Sci., pp. 72-77, DOI: 10.1016/S0723-2020(00)80050-8.
- 21. Smith, C.J., McKew, B.A., Coggan, A. & Whitby, C. (2015). Primers: functional genes for nitrogen-cycling microbes in oil reservoirs. In Hydrocarbon and Lipid, Microbiol. Protocols, pp. 207-241, DOI: 10.1007/8623_2015_184.
- 22. Stewart, E.J. (2012). Growing unculturable bacteria. J. Bacteriol., 194(16), pp. 4151-4160, DOI: 10.1128/JB.00345-12.
- 23. Tekile A., Kim I. & Kim J. (2015). Mini-reveiw on rover eutrophication and bottom improvement techniques with special emphasis on the Nakdong River, J Environ. Sci., 30, pp. 113-121, DOI: 10.1016/j.jes.2014.10.014.
- 24. Tomaszewski, A., Cema, G., Ciesielski, S., Łukowiec, D. & Ziembińska-Buczyńska, A., (2019). Cold anammox process and reduced graphene oxide - varieties of effects during long-term interaction, Water Res., 156, pp. 71-81, DOI: 10.1016/j.watres.2019.03.006.
- 25. Wallenstein, M.D., Myrold, D.D., Firestone, M. & Voytek, M. (2006). Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods, Ecol. Appl., 16(6), pp. 2143-2152, DOI: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2.
- 26. Wang, D., Wang, G., Zhang, G., Xu, X. & Yang, F. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal, Bioresour. Technol., 131, 527-530, DOI:10.1016/j.biortech.2013.01.099.
- 27. Wang, Y., Wang, H., Zhang, J., Yao, L. & Wei, Y. (2016). Deciphering the evolution of the functional genes and microbial community of the combined partial nitritation-anammox process with nitrate build-up and its in situ restoration, RSC Advances, 6(113), pp. 111702-111712, DOI: 10.1039/c6ra23865c.
- 28. Wang, G., Xu, X., Zhou, L., Wang, C. & Yang, F. (2017). A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment, Bioresour. Technol., 241, pp. 181-189, DOI: 10.1016/j.biortech.2017.02.125.
- 29. Wang, Q. & He, J. (2020). Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process, FEMS Microbiol. Ecol., 96(1), DOI: 10.1093/femsec/fiz202.
- 30. Whang, L.M., Chien, I.C., Yuan, S.L. & Wu, Y.J. (2009). Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants, Chemosphere, 75(2), pp. 234-242, DOI: 10.1016/j.chemosphere.2008.11.059.
- 31. Winkler, M.K., Bassin, J.P., Kleerebezem, R., Sorokin, D.Y. & van Loosdrecht, M.C. (2012). Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge, Applied Microbiol. Biotechnol., 94(6), pp. 1657-1666, DOI: 10.1007/s00253-012-4126-9.
- 32. Yang, Y.D., Hu, Y.G., Wang, Z.M. & Zeng, Z.H. (2018). Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes, Sci. Pollut., 25(14), pp. 14057-14067, DOI: 10.1007/s11356-018-1548-7.
- 33. Yao, Q. & Peng, D.C. (2017). Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants, AMB Express, 7(1), 25, DOI: 10.1186/s13568-017-0328-y.
- 34. Yoshida, M., Ishii, S., Fujii, D., Otsuka, S. & Senoo? (2012). Identification of Active Denitrifiers in Rice Paddy Soil by DNA and RNA-Based Analyses, Microbes Environ., 27, 4, pp. 456-461, DOI: 10.1264/jsme2.ME12076.
- 35. Zahedi, A., Greay, T.L., Paparini, A., Linge, K.L., Joll, C.A. & Ryan, U.M. (2019). Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection, Water Res., 158, pp. 301-312, DOI: 10.1016/j.watres.2019.04.041.
- 36. Zhang, X., Zheng, S., Xiao, X., Wang, L. & Yin, Y. (2017). Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking, Bioresour. Technol., 226, pp. 267-271, DOI: 10.1016/j.biortech.2016.12.047.
- 37. Zhang, Y., Ruan, X. & Shi, W. (2019). Changes in the nitrogen biogeochemical cycle in sediments of an urban river under different dissolved oxygen levels, Water Supply, 19(4), pp. 1271-1278, DOI: 10.2166/ws.2018.188.
- 38. Ziembińska-Buczyńska, A., Banach, A., Bacza, T. & Pieczykolan, M. (2014). Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production, World J. Microbiol. Biotechnol., 30(12), pp. 3047-3053, DOI: 10.1007/s11274-014-1731-z.
- 39. Ziembińska-Buczyńska, A., Banach-Wiśniewska, A., Tomaszewski, M., Poprawa, I., Student, S. & Cema, G. (2019). Ecophysiology and dynamics of nitrogen removal bacteria in a sequencing batch reactor during wastewater treatment start-up, Int. J. Environ., 16(8), pp. 4215-4222, DOI: 10.1007/s13762-019-02275-w.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf247ca7-cdcc-41e3-9c92-e705aa6564f2