PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, A2O3-ZrO2-TiC and AI2O3-Ti(C,N) has been presented. Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method) of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composite with unstabilized and stabilized zirconia, alumina-zirconia composite with addition of TiC and alumina-nitride-carbide titanium composite with 2wt% of zirconia. Specimens were prepared from submicro-scale trade powders. Vicker’s hardness (HV1), fracture toughness (KIC) at room temperature, the indentation fracture toughness, Young’s modulus and apparent density were also evaluated. The microstructure was observed by means of scanning electron microscopy (SEM). Findings: The lowest value of KIC is revealed by pure alumina ceramics. The addition of (10 wt%) unstabilized zirconia to alumina or a small amount (5 wt%) of TiC to alumina-zirconia composite improve fracture toughness of these ceramics in comparison to alumina ceramics. Alumina ceramics and alumina-zirconia ceramics reveal the pronounced character of R-curve because of an increasing dependence on crack growth resistance with crack extension as opposed to the titanium carbide-nitride reinforced composite based on alumina. R-curve has not been observed for this composite. Practical implications: The results show the method of fracture toughness improvement of alumina tool ceramics. Originality/value: Taking into account the values of fracture toughness a rational use of existing ceramic tools should be expected.
Rocznik
Strony
202--210
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Centre of Materials Engineering and Sintering Techniques, Institute of Advanced Manufacturing Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland
Bibliografia
  • [1] P. Putyra, M. Podsiadło, B. Smuk, Alumina-Ti(C,N) ceramics with TiB2 additives, Archives of Materials Science and Engineering 47/1 (2011) 27-32.
  • [2] L.A. Dobrzański, M. Kremzer, A. Nagel, B. Huchler, Fabrication of ceramic preforms based on Al2O3 CL 2500 powder, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 71-74.
  • [3] M. Szutkowska, B. Smuk, Kalinka, K. Czechowski, M. Bućko, M. Boniecki, Selected mechanical properties and microstructure of Al2O3-ZrO2 nanoceramic composites, Journal of Achievements in Materials and Manufacturing Engineering 48/1 (2011) 59-63.
  • [4] M.D. Demetriou, M.E. Launey, G. Garrett, J. P. Schramm, D.C. Hofmann, W.L. Johnson, W. L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nature Materials 10 (2011) 123-128.
  • [5] F.T. da Silva, M.A.N. Zacché, H.S. de Amorim, Influence of different surface treatments on the fracture toughness of a commercial ZTA dental ceramic, Materials Res 10/1 (2007) 63-68.
  • [6] M. Szutkowska, M. Boniecki, Crack Growth Resistance of Alumina Tool Ceramics, Proceedings of the World Congress on “Powder Metallurgy and Particulate Materials” PM2TEC’2002, Orlando, 6 (2002) 34-38.
  • [7] K. Strecker, S. Ribeiro, M.J. Hoffman, Fracture toughness measurements of LPS-SiC: a comparison of the indentation technique and the SEVNB method, Materials Research 8/2 (2005) 121-124.
  • [8] G.A. Gogotsi, Fracture toughness of ceramics and ceramic composites, Ceramic international 29 (2003) 777-784.
  • [9] A. Gatto, Critical evaluation of indentation fracture toughness measurements with Vickers indenter on ceramic matrix composite tools, Materials Processing Technology 174 (2006) 67-73.
  • [10] ISO 24370:2005, Fine ceramics (advanced ceramics, advanced technical ceramics) - test metod for fracture toughness of monolit hic ceramics at room temperature by chevron-notched beam (CNB) method.
  • [11] ISO 18756:2003, Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of fracture toughness of monolit hic ceramics AT room temperature by the surface crack In flexure (SCF) method.
  • [12] ISO 15732:2005, Fine ceramics (advanced ceramics, advanced technical ceramics) - test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method.
  • [13] D. Munz , T. Fett, Ceramics, Mechanical properties, Failure behaviour, Materials selection, Springer-Verlag, Berlin Heidelberg, 1999.
  • [14] M. Szutkowska, M. Boniecki, M. Bucko, R-curve behaviour of alumina matrix ceramics with long cracks, Advances in Science and Technology 45 (2006) 1652-1657.
  • [15] R. Riedel, Handbook of ceramic hard materials, Wiley-VCH, 2000.
  • [16] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIC of brittle solid by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters 1 (1982) 13-16.
  • [17] G.A. Helvey, Finishing zirconia chairside, What dental technicians need to tell their dentist clients about the effects of surface grinding, Inside dental technology 2/2 (2011) www.dentalaegis.com/idt/2011/02/finishing-zirconia-chairside.
  • [18] J.F. Bartolome, A.H. De Aza, A. Martin, J.Y. Pastor, J. Llorca, R. Torrecillas, G. Bruno, Alumina/zirconia micro/nanocomposites, A new material for biomedical applications with superior sliding wear resistance, Journal of American Ceramic Society 90/10 (2007) 3177-3184.
  • [19] Kee-Do Woo, Byung-Ryang Kim, Eui-Pyo Kwon, Duck-Soo Kang, In-Jin Shon, Properties and rapid consolidation of nanostructured TiC-based hard materials with various binders by a high-frequency induction heated sintering, Ceramics International 36 (2010) 351-355.
  • [20] T. Fett, An analysis of the three-point bending bar by use of the weight function method, Engineering Fracture Mechanics 40/3 (1991) 683-686.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf247808-bf45-4483-a822-3f87541f574b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.