Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a fault detection and isolation (FDI) method applied to a wind turbine system. The approach utilizes a nonlinear sliding mode observer (SMO) to effectively reconstruct faults in both the hydraulic pitch actuator and generator torque actuator of the wind turbine. A Linear Matrix Inequality (LMI) optimization approach is employed for the design. The blade pitch angle and generator torque in the wind turbine have significantly different orders of magnitudes, rendering them vulnerable to faults of different magnitudes. This discrepancy poses a challenge for the simultaneous reconstruction of faults. To resolve this challenge, a modification is made to the observer. To examine the effectiveness of the modified SMO, two fault scenarios were considered for the hydraulic pitch actuator and generator torque actuator. In the first case, faults are introduced separately, while in the second case, faults occur simultaneously. Simulation results demonstrate accurate detection, isolation, and reconstruction of these faults, whether in the case of separate or simultaneous fault occurrences.
Czasopismo
Rocznik
Tom
Strony
art. no 2024211
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Electronics and Systems Laboratory - LES, Faculty of Sciences Oujda, Embedded Systems, Renewable Energy and Artificial Intelligence Team, ENSA, Oujda, Morocco
autor
- Computer Science, Signal, Automation and Cognitivism Laboratory (LISAC), Faculty of Science Sidi Mohamed Ben Abdellah University, Fez, Morocco
autor
- Embedded Systems, Renewable Energy and Artificial Intelligence Team, National School of Applied Sciences, Mohammed First University, Oujda, Morocco
Bibliografia
- 1. Letcher T. Wind energy engineering: a handbook for onshore and offshore wind turbines. Elsevier; 2023.
- 2. Zouirech S, Zerouali M, El Ougli A, Tidhaf B. Maximum Power Extraction from a Wind Turbine Energy Source Based on Fuzzy and Conventional Techniques for Integration in Micro-Grid. International Conference on Electronic Engineering and Renewable Energy 2020: 819-829. https://doi.org/10.1007/978-981-15-6259-4_86.
- 3. Mary SA. Fault Diagnosis and Control Techniques for Wind Energy Conversion System: A Systematic Review. Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT) 2022: 700-704. https://doi.org/10.1109/ICICICT54557.2022.9917722.
- 4. Li J, Wang S. Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults. Renewable Energy 2021; 174: 293-304. https://doi.org/10.1016/j.renene.2021.04.080.
- 5. Odgard PF, Stoustrup J, Kinnaert M. Fault-Tolerant Control of Wind Turbines: A Benchmark Model. IEEE Transactions on Control Systems Technology 2013; 21: 1168-1182 https://doi.org/10.1109/TCST.2013.2259235.
- 6. Djoudi HCB, Hafaifa A, Djoudi D, Guemana M. Fault tolerant control of wind turbine via identified fuzzy models prototypes. Diagnostyka 2020; 21(3): 3-13. https://doi.org/10.29354/diag/123220.
- 7. Azzouzi M, Diarra R, Popescu D. (2018). Fault diagnosis of sensors, actuators and wind turbine system. Diagnostyka; 2018, 19(4): 3-10. https://doi.org/10.29354/diag/93846.
- 8. Lan J, Patton RJ. Robust integration of model-based fault estimation and fault-tolerant control. Berlin/Heidelberg, Germany: Springer 2021. https://doi.org/10.1007/978-3-030-58760-4.
- 9. Ashwini P, Archana T. Observer-based robust faulttolerant control for wind energy system. International Journal of System Assurance Engineering and Management 2021; 1-8. https://doi.org/10.1155/2018/5628429.
- 10. Zhao S, Xia J, Deng R, Cheng P, Yang Q. Adaptive Observer-Based Resilient Control Strategy for Wind Turbines Against Time-Delay Attacks on Rotor Speed Sensor Measurement. IEEE Transactions on Sustainable Energy 2023, 14(3): 1807-1821. https://doi.org/10.1109/TSTE.2023.3248862.
- 11. Cho S, Gao Z, Moan T. Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines. Renewable energy 2018, 120, 306-321. https://doi.org/10.1016/j.renene.2017.12.102.
- 12. Teng J, Li C, Feng Y, Yang T, Zhou R, Sheng QZ. Adaptive observer based fault tolerant control for sensor and actuator faults in wind turbines. Sensors 2021, 21(24), 8170. https://doi.org/10.3390/s21248170.
- 13. Chen J, Patton RJ. Robust model-based fault diagnosis for dynamic systems. Springer Science & Business Media 2012.
- 14. Sedigh Ziyabari SH, Aliyari Shoorehdeli M, Karimirad M. Robust fault estimation of a blade pitch and drivetrain system in wind turbine model. Journal of Vibration and Control 2021, 27(3-4): 277-294. https://doi.org/10.1177/1077546320926274.
- 15. Shi F, Patton R. An active fault tolerant control approach to an offshore wind turbine model. Renewable Energy 2015; 75: 788-798. https://doi.org/10.1016/j.renene.2014.10.061.
- 16. Mousavi M, Rahnavard M, Haddad S. Observer based fault reconstruction schemes using terminal sliding modes. International Journal of Control 2020, 93(4): 881-888. https://doi.org/10.1080/00207179.2018.1487082.
- 17. Taouil M, El Ougli A, Tidhaf B, Zrouri H. Sensor fault reconstruction for wind turbine benchmark model using a modified sliding mode observer. International Journal of Electrical and Computer Engineering 2023, 13(5): 5066-5075 http://doi.org/10.11591/ijece.v13i5.pp5066-5075.
- 18. Sloth C, Esbensen T, Stoustrup J. Robust and faulttolerant linear parameter-varying control of wind turbines. Mechatronics 2011; 21(4): 645-659. https://doi.org/10.1016/j.mechatronics.2011.02.001.
- 19. Edwards C, Spurgeon SK. On the development of discontinuous observers. International Journal of control 1994; 59(5): 1211-1229. https://doi.org/10.1080/00207179408923128.
- 20. Alwi H, Edwards C, Tan CP. Fault detection and fault-tolerant control using sliding modes. London: Springer; 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf229089-8a4a-4fbc-9428-89b2d5cd56b7