PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The variational iteration method for a pendulum with a combined translational and rotational system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic analysis of complex mechanical systems often requires the application of advanced mathematical techniques. In this study, we present a variation iteration-based solution for a pendulum system coupled with a rolling wheel, forming a combined translational and rotational system. Furthermore, the Lagrange multiplier is calculated using the Elzaki transform. The system under investigation consists of a pendulum attached to a wheel that rolls without slipping on a horizontal surface. The coupled motion of the pendulum and the rolling wheel creates a complex system with both translational and rotational degrees of freedom. To solve the governing equations of motion, we employ the variation iteration method, a powerful numerical technique that combines the advantages of both variational principles and iteration schemes. The Lagrange multiplier plays a crucial role in incorporating the constraints of the system into the equations of motion. In this study, we determine the Lagrange multiplier using the Elzaki transform, which provides an effective means to calculate Lagrange multipliers for constrained mechanical systems. The proposed solution technique is applied to analyse the dynamics of a pendulum with a rolling wheel system. The effects of various system parameters, such as the pendulum length, wheel radius and initial conditions, are investigated to understand their influence on the system dynamics. The results demonstrate the effectiveness of the variation iteration method combined with the Elzaki transform in capturing the complex behaviour of a combined translational and rotational system. The proposed approach serves as a valuable tool for analysing and understanding the dynamics of similar mechanical systems encountered in various engineering applications.
Rocznik
Strony
48--54
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan
autor
  • Department of Mathematics, University of Management and Technology, Lahore 54782, Pakistan
  • Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan
Bibliografia
  • 1. Moatimid GM, Amer TS. Analytical solution for the motion of a pen-dulum with rolling wheel: stability analysis. Scientific Reports. 2022 Jul 24;12(1):12628.
  • 2. Haider JA, Muhammad N, Nadeem S, Asghar S. Analytical analysis of the fourth-order Boussinesq equation by traveling wave solutions. International Journal of Modern Physics B. 2023 Jul 10;37(17):22350170.
  • 3. Matrosov I, Morozov Y, Pesterev A. Control of the robot-wheel with a pendulum. In2020 15th International Conference on Stability and Os-cillations of Nonlinear Control Systems (Pyatnitskiy's Confer-ence)(STAB) 2020 Jun 3 (1-4). IEEE.
  • 4. Haider JA, Zaman FD, Lone SA, Anwar S, Almutlak SA, Elseesy IE. Exact solutions of Euler–Bernoulli beams. Modern Physics Letters B. 2023 Jul 12:2350161.
  • 5. Palazoğlu TK, Miran W. Experimental investigation of the combined translational and rotational movement on an inclined conveyor on ra-dio frequency heating uniformity. Innovative Food Science & Emerg-ing Technologies. 2018 Jun 1;47:16-23.
  • 6. Tanly NN, Fotsa RT, Woafo P. Complex Dynamics of a Mechanical Mechanism Combining Translational and Rotational Motions. Journal of Vibration Engineering & Technologies. 2022 Jul;10(5):1753-64.
  • 7. Raza MY, Haider JA, Ahammad NA, Guedri K, Galal AM. Insightful study of the characterization of the Cobalt oxide nanomaterials and hydrothermal synthesis. International Journal of Modern Physics B. 2023 Apr 30;37(11):2350101.
  • 8. Panayanthatta N, Clementi G, Ouhabaz M, Costanza M, Margueron S, Bartasyte A, Basrour S, Bano E, Montes L, Dehollain C, La Rosa R. A self-powered and battery-free vibrational energy to time con-verter for wireless vibration monitoring. Sensors. 2021 Nov 11;21(22):7503.
  • 9. Guler U, Sendi MS, Ghovanloo M. A dual-mode passive rectifier for wide-range input power flow. In2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) 2017 Aug 6 (pp. 1376-1379). IEEE.
  • 10. Chen J, Bao B, Liu J, Wu Y, Wang Q. Pendulum Energy Harvesters: A Review. Energies. 2022 Nov 18;15(22):8674.
  • 11. Hunt JB. Dynamic vibration absorbers. 1979.
  • 12. Nadeem S, Haider JA, Akhtar S, Ali S. Numerical simulations of convective heat transfer of a viscous fluid inside a rectangular cavity with heated rotating obstacles. International Journal of Modern Phys-ics B. 2022 Nov 10;36(28):2250200.
  • 13. Serway RA, Beichner RJ. Physics for Scientists and Engineers 5th edn (Forth Worth, TX: Saunders).
  • 14. Beléndez A, Pascual C, Méndez DI, Beléndez T, Neipp C. Exact solution for the nonlinear pendulum. Revista brasileira de ensino de física. 2007;29:645-8.
  • 15. Parwani RR. An approximate expression for the large angle period of a simple pendulum. European journal of physics. 2003 Oct 10;25(1):37.
  • 16. Haider JA, Rahman JU, Zaman FD, Gul S. Travelling wave solutions of the non-linear wave equations. Acta mechanica et automatica. 2023;17(2).
  • 17. Elmandouh AA. On the integrability of the motion of 3D-Swinging Atwood machine and related problems. Physics Letters A. 2016 Mar 6;380(9-10):989-91.
  • 18. Wang F, Bajaj AK, Kamiya K. Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system. Nonlinear Dynamics. 2005 Nov;42:233-65.
  • 19. El-Sabaa FM, Amer TS, Gad HM, Bek MA. On the motion of a damped rigid body near resonances under the influence of harmoni-cally external force and moments. Results in Physics. 2020 Dec 1;19:103352.
  • 20. Anurag, Mondal B, Shah T, Chakraborty S. Chaos and order in librating quantum planar elastic pendulum. Nonlinear Dynamics. 2021 Feb;103:2841-53.
  • 21. Haider JA, Asghar S, Nadeem S. Travelling wave solutions of the third-order KdV equation using Jacobi elliptic function method. Inter-national Journal of Modern Physics B. 2023 May 10;37(12):2350117.
  • 22. Amer TS, Bek MA, Abohamer MK. On the motion of a harmonically excited damped spring pendulum in an elliptic path. Mechanics Re-search Communications. 2019 Jan 1;95:23-34.
  • 23. Xu X, Wiercigroch M. Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dynam-ics. 2007 Jan;47:311-20.
  • 24. Sorokin VS. Analysis of motion of inverted pendulum with vibrating suspension axis at low-frequency excitation as an illustration of a new approach for solving equations without explicit small parameter. International Journal of Non-Linear Mechanics. 2014 Jul 1; 63:1-9.
  • 25. Haider JA, Ahammad NA, Khan MN, Guedri K, Galal AM. Insight into the study of natural convection heat transfer mechanisms in a square cavity via finite volume method. International Journal of Modern Physics B. 2023 Feb 10;37(04):2350038.
  • 26. Khan MM. Variational Iteration Method for the Solution of Differential Equation of Motion of the Mathematical Pendulum and Duffing-Harmonic Oscillator. Earthline Journal of Mathematical Sciences. 2019 May 2;2(1):101-9.
  • 27. Amir M, Haider JA, Ahmad S, Ashraf A, Gul S. Approximate solution of painlevé equation i by natural decomposition method and laplace decomposition method. acta mechanica et automatica. 2023;17(3).
  • 28. Ozis T, Yildirim A. Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method. Computers and Mathematics with Applications. 2007 Oct 1;54(7):1184-7.
  • 29. Amir M, Awais M, Ashraf A, Ali R, Ali Shah SA. Analytical Method for Solving Inviscid Burger Equation. Punjab University Journal of Math-ematics. 2023 Dec 3;55(1).
  • 30. Wang SQ, He JH. Variational iteration method for solving integro-differential equations. Physics letters A. 2007 Jul 23;367(3):188-91
  • 31. Haider JA, Ahmad S. Dynamics of the Rabinowitsch fluid in a re-duced form of elliptic duct using finite volume method. International Journal of Modern Physics B. 2022 Dec 10;36(30):2250217.
  • 32. Liu F, Zhang T, He CH, Tian D. Thermal oscillation arising in a heat shock of a porous hierarchy and its application. Facta Universitatis, Series: Mechanical Engineering. 2022 Nov 30;20(3):633-45.
  • 33. Haider JA, Muhammad N. Computation of thermal energy in a rec-tangular cavity with a heated top wall. International Journal of Mod-ern Physics B. 2022 Nov 20;36(29):2250212.
  • 34. Haider JA, Muhammad N. Computation of thermal energy in a rec-tangular cavity with a heated top wall. International Journal of Mod-ern Physics B. 2022 Nov 20;36(29):2250212.
  • 35. He JH. Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear me-chanics. 1999 Jul 1;34(4):699-708.
  • 36. Rahman JU, Mannan A, Ghoneim ME, Yassen MF, Haider JA. Insight into the study of some nonlinear evolution problems: Applica-tions based on Variation Iteration Method with Laplace. International Journal of Modern Physics B. 2023 Jan 30;37(03):2350030.
  • 37. He JH, Latifizadeh H. A general numerical algorithm for nonlinear differential equations by the variational iteration method. International Journal of Numerical Methods for Heat & Fluid Flow. 2020 Oct 15;30(11):4797-810.
  • 38. He JH. Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear me-chanics. 1999 Jul 1;34(4):699-708.
  • 39. He JH. Approximate analytical solution for seepage flow with frac-tional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering. 1998 Dec 1;167(1-2):57-68.
  • 40. He JH. Variational iteration method—some recent results and new interpretations. Journal of computational and applied mathematics. 2007 Oct 1;207(1): 3-17.
  • 41. Elzaki TM. Application of new transform “Elzaki transform” to partial differential equations. Global Journal of pure and applied Mathemat-ics. 2011;7(1):65-70.
  • 42. Anjum N, He JH. Laplace transform: making the variational iteration method easier. Applied Mathematics Letters. 2019 Jun 1;92:134-8
  • 43. Moatimid GM, Amer TS. Analytical solution for the motion of a pen-dulum with rolling wheel: stability analysis. Scientific Reports. 2022 Jul 24;12(1):12628.
  • 44. Nayfeh AH. Introduction to perturbation techniques. John Wiley & Sons; 2011 Apr 8.
  • 45. Ghaleb AF, Abou-Dina MS, Moatimid GM, Zekry MH. Analytic ap-proximate solutions of the cubic–quintic Duffing–van der Pol equation with two-external periodic forcing terms: Stability analysis. Mathemat-ics and Computers in Simulation. 2021 Feb 1;180:129-51.
  • 46. Asghar S, Haider JA, Muhammad N. The modified KdV equation for a nonlinear evolution problem with perturbation technique. Interna-tional Journal of Modern Physics B. 2022 Sep 30;36(24):2250160.
  • 47. He CH, Amer TS, Tian D, Abolila AF, Galal AA. Controlling the kinematics of a spring-pendulum system using an energy harvesting device. Journal of Low Frequency Noise, Vibration and Active Con-trol. 2022 Sep;41(3):1234-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf1b634a-2a9d-446c-badf-739e9c9e38e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.