PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Common driving notification protocol based on classified driving behavior for cooperation intelligent autonomous vehicle using vehicular ad-hoc network technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A protocol, called common driving notification protocol (CDNP), is proposed based on the classified driving behavior for intelligent autonomous vehicles, and it defines a standard with common messages and format for vehicles. The common standard format and definitions of CDNP packet make the autonomous vehicles have a common language to exchange more detail driving decision information of various driving situations, decrease the identification time for one vehicle to identify the driving decisions of other vehicles before or after those driving decisions are performed. The simulation tools, including NS- 3 and SUMO, are used to simulate the wireless data packet transmission and the vehicle mobility; the experiment results present that the proposed protocol, CDNP, can increase the reaction preparing time with maximum value 250 seconds, decrease the identification time and the average travel time. Prospectively, it is decided to implement the CDNP as a protocol stack in the Linux kernel to provide the basic protocol capability for real world transmission testing.
Rocznik
Strony
5--21
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Computational Intelligence and Systems Science Tokyo Institute of Technology G3-49, 4259 Nagatsuta, Midori-ku Yokohama 226-8502, Japan
autor
  • Department of Computational Intelligence and Systems Science Tokyo Institute of Technology G3-49, 4259 Nagatsuta, Midori-ku Yokohama 226-8502, Japan
autor
  • Department of Computational Intelligence and Systems Science Tokyo Institute of Technology G3-49, 4259 Nagatsuta, Midori-ku Yokohama 226-8502, Japan
Bibliografia
  • [1] Q. Li, L. Chen, M. Li, S. L. Shaw, A. Nuchter, A Sensor-Fusion Drivable-Region and Lane-Detection System for Autonomous Vehicle Navigation in Challenging Road Scenarios, IEEE Transactions on Vehicular Technology, 63, 2014, pp. 540-555.
  • [2] K. Chu, M. Lee, M. Sunwoo, Local Path Planning for Off-Road Autonomous Driving With Avoidance of Static Obstacles, IEEE Transactions on Intelligent Transportation Systems, 13, 2012, pp. 1599-1616.
  • [3] A. Broggi, M. Buzzoni, S. Debattisti, P. Grisleri, M.C. Laghi, P. Medici, P. Versari, Extensive Tests of Autonomous Driving Technologies, IEEE Transactions on Intelligent Transportation Systems, 14, 2013, pp. 1403-1415.
  • [4] J. Choi, J. Lee, D. kim, G. Soprani, P. Cerri, A. Broggi, K Yi, Environment-Detection-and-Mapping Algorithm for Autonomous Driving in Rural or Off-Road Environment, IEEE Transactions on Intelligent Transportation Systems, 13, 2012, pp. 974-982.
  • [5] J. Hardy, M. Campbell, Contingency Planning Over Probabilistic Obstacle Predictions for Autonomous Road Vehicles, IEEE Transactions on Robotics, 29, 2013, pp.913-929.
  • [6] Y. Toor, P. Muhlethaler, A. Laouiti, Vehicle Ad Hoc networks: applications and related technical issues, IEEE Communications Surveys & Tutorials, 10, 2008, pp. 74-88.
  • [7] L. Guvenc, I. M. C. Uygan, K. Kahraman, R. Karaahmetoglu, I. Altay, M. Senturk, M. T. Emirler, A. E. H. Karci, B. A. Guvenc, E. Altug, M. C. Turan, O. S. Tas, E. Bozkurt, U. Ozguner, K. Redmill, A. Kurt, B. Efendioglu, Cooperative Adaptive Cruise Control Implementation of Team Mekar at the Grand Cooperative Driving Challenge, IEEE Transactions on Intelligent Transportation Systems, 13, 2012, pp.1062-1074.
  • [8] C. Lin, F. Dong, K. Hirota, Fuzzy Inference Based Vehicle to Vehicle Network Connectivity Model to Support Optimization Routing Protocol for Vehicular Ad-Hoc Network (VANET), Journal of Advanced Computational Intelligence and Intelligent Informatics, 18, 2014, pp. 9-12.
  • [9] X. Ma, J. Zhang, X. Yin, K.S. Trivedi, Design and Analysis of a Robust Broadcast Scheme for VANET Safety-Related Services, IEEE Transactions on Vehicular Technology, 61, 2012, pp. 46-61.
  • [10] S. Mohammad, A. Rasheed, A. Qayyum, VANET Architectures and Protocol Stacks: A Survey, Communication Technologies for Vehicles, 6596, 2011, pp. 95-105.
  • [11] C.-Y. Yang, S.-C. Lo, Street Broadcast with Smart Relay for Emergency Messages in VANET, 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 323-328.
  • [12] J.-H. Lim, W. Kim, K. Naito, M. Gerla, Interplay between TVWS and DSRC: Optimal strategy for QoS of safety message dissemination in VANET, 2013 International Conference on Computing, Networking and Communications (ICNC), 2013, pp. 1156-1161.
  • [13] S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, H. Fujii, Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications, IEEE Transactions on Intelligent Transportation Systems, 3, 2002, pp. 155-161.
  • [14] L. Li, F.-Y. Wang, Cooperative Driving at Blind Crossings Using Intervehicle Communication, IEEE Transactions on Vehicular Technology, 55, 2006, pp. 1712-1724.
  • [15] M. Casares, A. Almagambetov, S. Velipasalar, A Robust Algorithm for the Detection of Vehicle Turn Signals and Brake Lights, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance (AVSS), 2012, pp. 386-391.
  • [16] Y. Li, Z.-X. Cai, J. Tang, Recognition algorithm for turn light of front vehicle, Journal of Central South University, 19, 2012, pp. 522-526.
  • [17] NS-3, from http://www.nsnam.org/.
  • [18] M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, SUMO-Simulation of Urban Mobility-an Overview, The Third International Conference on Advances in System Simulation, Barcelona, Spain, 2011, pp. 55-60.
  • [19] IEEE Standards Association, IEEE 802.11p-2010: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,2010.
  • [20] DSRC Committee, Dedicated short range communications (DSRC) message set dictionary, SAE Standard J2735, SAE Internal, 2009.
  • [21] IEEE Standards Association, IEEE standard for wireless access in vehicular environments (WAVE) –multi-channel operation, 2010.
  • [22] Q. Yang, A. Lim, S. Li, J. Fang, P. Agrawal, ACAR: Adaptive Connectivity Aware Routing for Vehicular Ad Hoc Networks in City Scenarios. Mobile Networks and Applications, 15, 2010, pp. 36-60.
  • [23] W. Viriyasitavat, O. K. Tonguz, F. Bai, UV-CAST: an urban vehicular broadcast protocol, IEEE Communications Magazine, 49, 2011, pp. 116-124.
  • [24] M. Slavik, I. Mahgoub, Spatial Distribution and Channel Quality Adaptive Protocol for Multihop Wireless Broadcast Routing in VANET, IEEE Transactions on Mobile Computing, 12, 2013, pp. 722-734.
  • [25] ETSI EN 302 665 V1.1.1 (2010-09). Intelligent Transport Systems (ITS), 2010.
  • [26] X. Yin, X. Ma, K. S. Trivedi, MAC and application level performance evaluation of beacon message dissemination in DSRC safety communication, Performance Evaluation, 71, 2014, pp. 1-24.
  • [27] J. B. Kenney, Dedicated Short-Range Communications (DSRC) Standards in the United States, Proceedings of the IEEE, 99, 2011, pp. 1162-1182.
  • [28] ETSI TC 102 637-2 V1.2.1 (2011-03) Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, 2011.
  • [29] L. Zhang, B. Jin, Dubhe: A Reliable and Low-Latency Data Dissemination Mechanism for VANETs, International Journal of Distributed Sensor Networks, doi:10.1155/2013/581821, 2013.
  • [30] H. Saleet, O. Basir, R. Langar, R. Boutaba, Region-Based Location-Service-Management Protocol for VANETs, IEEE Transactions on Vehicular Technology,59, 2010, pp. 917-931.
  • [31] E. Lochin, G. Jourjon, S. Ardon, Design and validation of a reliable rate based transport protocol: The Chameleon protocol, Global Information Infrastructure Symposium (GIIS ’09), 2009, pp. 1-8.
  • [32] A. Wegener, M. Piorkowski, M. Raya, H. Hellbrck, S. Fischer, J. P. Hubaux, TraCI: An Interface for Coupling Road Traf?c and Network Simulators, 11th Commun. and Networking Simulation Symposium (CNS’08), 2008, pp. 155-163.
  • [33] Openstreetmap, from http://www.openstreetmap.org/.
  • [34] Q. Luo, L. Xun, Z. Cao, Y. Huang, Simulation analysis and study on car-following safety distance model based on braking process of leading vehicle, 2011 9th World Congress on Intelligent Control and Automation (WCICA), 2011, pp. 740-743
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf0d6d6c-82f2-4a2f-8738-ac28a98da743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.